亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer in which the tumor-vascular involvement greatly affects the resectability and, thus, overall survival of patients. However, current prognostic prediction methods fail to explicitly and accurately investigate relationships between the tumor and nearby important vessels. This paper proposes a novel learnable neural distance that describes the precise relationship between the tumor and vessels in CT images of different patients, adopting it as a major feature for prognosis prediction. Besides, different from existing models that used CNNs or LSTMs to exploit tumor enhancement patterns on dynamic contrast-enhanced CT imaging, we improved the extraction of dynamic tumor-related texture features in multi-phase contrast-enhanced CT by fusing local and global features using CNN and transformer modules, further enhancing the features extracted across multi-phase CT images. We extensively evaluated and compared the proposed method with existing methods in the multi-center (n=4) dataset with 1,070 patients with PDAC, and statistical analysis confirmed its clinical effectiveness in the external test set consisting of three centers. The developed risk marker was the strongest predictor of overall survival among preoperative factors and it has the potential to be combined with established clinical factors to select patients at higher risk who might benefit from neoadjuvant therapy.

相關內容

Scanning electron microscopy (SEM) is indispensable in diverse applications ranging from microelectronics to food processing because it provides large depth-of-field images with a resolution beyond the optical diffraction limit. However, the technology requires coating conductive films on insulator samples and a vacuum environment. We use deep learning to obtain the mapping relationship between optical super-resolution (OSR) images and SEM domain images, which enables the transformation of OSR images into SEM-like large depth-of-field images. Our custom-built scanning superlens microscopy (SSUM) system, which requires neither coating samples by conductive films nor a vacuum environment, is used to acquire the OSR images with features down to ~80 nm. The peak signal-to-noise ratio (PSNR) and structural similarity index measure values indicate that the deep learning method performs excellently in image-to-image translation, with a PSNR improvement of about 0.74 dB over the optical super-resolution images. The proposed method provides a high level of detail in the reconstructed results, indicating that it has broad applicability to chip-level defect detection, biological sample analysis, forensics, and various other fields.

An important prerequisite for autonomous robots is their ability to reliably grasp a wide variety of objects. Most state-of-the-art systems employ specialized or simple end-effectors, such as two-jaw grippers, which severely limit the range of objects to manipulate. Additionally, they conventionally require a structured and fully predictable environment while the vast majority of our world is complex, unstructured, and dynamic. This paper presents an implementation to overcome both issues. Firstly, the integration of a five-finger hand enhances the variety of possible grasps and manipulable objects. This kinematically complex end-effector is controlled by a deep learning based generative grasping network. The required virtual model of the unknown target object is iteratively completed by processing visual sensor data. Secondly, this visual feedback is employed to realize closed-loop servo control which compensates for external disturbances. Our experiments on real hardware confirm the system's capability to reliably grasp unknown dynamic target objects without a priori knowledge of their trajectories. To the best of our knowledge, this is the first method to achieve dynamic multi-fingered grasping for unknown objects. A video of the experiments is available at //youtu.be/Ut28yM1gnvI.

Background: Given that VR is applied in multiple domains, understanding the effects of cyber-sickness on human cognition and motor skills and the factors contributing to cybersickness gains urgency. This study aimed to explore the predictors of cybersickness and its interplay with cognitive and motor skills. Methods: 30 participants, 20-45 years old, completed the MSSQ and the CSQ-VR, and were immersed in VR. During immersion, they were exposed to a roller coaster ride. Before and after the ride, participants responded to CSQ-VR and performed VR-based cognitive and psychomotor tasks. Post-VR session, participants completed the CSQ-VR again. Results: Motion sickness susceptibility, during adulthood, was the most prominent predictor of cybersickness. Pupil dilation emerged as a significant predictor of cybersickness. Experience in videogaming was a significant predictor of both cybersickness and cognitive/motor functions. Cybersickness negatively affected visuospatial working memory and psychomotor skills. Overall cybersickness', nausea and vestibular symptoms' intensities significantly decreased after removing the VR headset. Conclusions: In order of importance, motion sickness susceptibility and gaming experience are significant predictors of cybersickness. Pupil dilation appears as a cybersickness' biomarker. Cybersickness negatively affects visuospatial working memory and psychomotor skills. Cybersickness and its effects on performance should be examined during and not after immersion.

Identification of optimal dose combinations in early phase dose-finding trials is challenging, due to the trade-off between precisely estimating the many parameters required to flexibly model the dose-response surface, and the small sample sizes in early phase trials. Existing methods often restrict the search to pre-defined dose combinations, which may fail to identify regions of optimality in the dose combination space. These difficulties are even more pertinent in the context of personalized dose-finding, where patient characteristics are used to identify tailored optimal dose combinations. To overcome these challenges, we propose the use of Bayesian optimization for finding optimal dose combinations in standard ("one size fits all") and personalized multi-agent dose-finding trials. Bayesian optimization is a method for estimating the global optima of expensive-to-evaluate objective functions. The objective function is approximated by a surrogate model, commonly a Gaussian process, paired with a sequential design strategy to select the next point via an acquisition function. This work is motivated by an industry-sponsored problem, where focus is on optimizing a dual-agent therapy in a setting featuring minimal toxicity. To compare the performance of the standard and personalized methods under this setting, simulation studies are performed for a variety of scenarios. Our study concludes that taking a personalized approach is highly beneficial in the presence of heterogeneity.

Tuberculosis (TB), a bacterial disease mainly affecting the lungs, is one of the leading infectious causes of mortality worldwide. To prevent TB from spreading within the body, which causes life-threatening complications, timely and effective anti-TB treatment is crucial. Cough, an objective biomarker for TB, is a triage tool that monitors treatment response and regresses with successful therapy. Current gold standards for TB diagnosis are slow or inaccessible, especially in rural areas where TB is most prevalent. In addition, current machine learning (ML) diagnosis research, like utilizing chest radiographs, is ineffective and does not monitor treatment progression. To enable effective diagnosis, an ensemble model was developed that analyzes, using a novel ML architecture, coughs' acoustic epidemiologies from smartphones' microphones to detect TB. The architecture includes a 2D-CNN and XGBoost that was trained on 724,964 cough audio samples and demographics from 7 countries. After feature extraction (Mel-spectrograms) and data augmentation (IR-convolution), the model achieved AUROC (area under the receiving operator characteristic) of 88%, surpassing WHO's requirements for screening tests. The results are available within 15 seconds and can easily be accessible via a mobile app. This research helps to improve TB diagnosis through a promising accurate, quick, and accessible triaging tool.

Variational inference (VI) can be cast as an optimization problem in which the variational parameters are tuned to closely align a variational distribution with the true posterior. The optimization task can be approached through vanilla gradient descent in black-box VI or natural-gradient descent in natural-gradient VI. In this work, we reframe VI as the optimization of an objective that concerns probability distributions defined over a \textit{variational parameter space}. Subsequently, we propose Wasserstein gradient descent for tackling this optimization problem. Notably, the optimization techniques, namely black-box VI and natural-gradient VI, can be reinterpreted as specific instances of the proposed Wasserstein gradient descent. To enhance the efficiency of optimization, we develop practical methods for numerically solving the discrete gradient flows. We validate the effectiveness of the proposed methods through empirical experiments on a synthetic dataset, supplemented by theoretical analyses.

Emerson-Lei conditions have recently attracted attention due to their succinctness and compositionality properties. In the current work, we show how infinite-duration games with Emerson-Lei objectives can be analyzed in two different ways. First, we show that the Zielonka tree of the Emerson-Lei condition gives rise naturally to a new reduction to parity games. This reduction, however, does not result in optimal analysis. Second, we show based on the first reduction (and the Zielonka tree) how to provide a direct fixpoint-based characterization of the winning region. The fixpoint-based characterization allows for symbolic analysis. It generalizes the solutions of games with known winning conditions such as B\"uchi, GR[1], parity, Streett, Rabin and Muller objectives, and in the case of these conditions reproduces previously known symbolic algorithms and complexity results. We also show how the capabilities of the proposed algorithm can be exploited in reactive synthesis, suggesting a new expressive fragment of LTL that can be handled symbolically. Our fragment combines a safety specification and a liveness part. The safety part is unrestricted and the liveness part allows to define Emerson-Lei conditions on occurrences of letters. The symbolic treatment is enabled due to the simplicity of determinization in the case of safety languages and by using our new algorithm for game solving. This approach maximizes the number of steps solved symbolically in order to maximize the potential for efficient symbolic implementations.

Understanding causality helps to structure interventions to achieve specific goals and enables predictions under interventions. With the growing importance of learning causal relationships, causal discovery tasks have transitioned from using traditional methods to infer potential causal structures from observational data to the field of pattern recognition involved in deep learning. The rapid accumulation of massive data promotes the emergence of causal search methods with brilliant scalability. Existing summaries of causal discovery methods mainly focus on traditional methods based on constraints, scores and FCMs, there is a lack of perfect sorting and elaboration for deep learning-based methods, also lacking some considers and exploration of causal discovery methods from the perspective of variable paradigms. Therefore, we divide the possible causal discovery tasks into three types according to the variable paradigm and give the definitions of the three tasks respectively, define and instantiate the relevant datasets for each task and the final causal model constructed at the same time, then reviews the main existing causal discovery methods for different tasks. Finally, we propose some roadmaps from different perspectives for the current research gaps in the field of causal discovery and point out future research directions.

We consider the problem of explaining the predictions of graph neural networks (GNNs), which otherwise are considered as black boxes. Existing methods invariably focus on explaining the importance of graph nodes or edges but ignore the substructures of graphs, which are more intuitive and human-intelligible. In this work, we propose a novel method, known as SubgraphX, to explain GNNs by identifying important subgraphs. Given a trained GNN model and an input graph, our SubgraphX explains its predictions by efficiently exploring different subgraphs with Monte Carlo tree search. To make the tree search more effective, we propose to use Shapley values as a measure of subgraph importance, which can also capture the interactions among different subgraphs. To expedite computations, we propose efficient approximation schemes to compute Shapley values for graph data. Our work represents the first attempt to explain GNNs via identifying subgraphs explicitly and directly. Experimental results show that our SubgraphX achieves significantly improved explanations, while keeping computations at a reasonable level.

Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.

北京阿比特科技有限公司