亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Optimizing the expected values of probabilistic processes is a central problem in computer science and its applications, arising in fields ranging from artificial intelligence to operations research to statistical computing. Unfortunately, automatic differentiation techniques developed for deterministic programs do not in general compute the correct gradients needed for widely used solutions based on gradient-based optimization. In this paper, we present ADEV, an extension to forward-mode AD that correctly differentiates the expectations of probabilistic processes represented as programs that make random choices. Our algorithm is a source-to-source program transformation on an expressive, higher-order language for probabilistic computation, with both discrete and continuous probability distributions. The result of our transformation is a new probabilistic program, whose expected return value is the derivative of the original program's expectation. This output program can be run to generate unbiased Monte Carlo estimates of the desired gradient, which can then be used within the inner loop of stochastic gradient descent. We prove ADEV correct using logical relations over the denotations of the source and target probabilistic programs. Because it modularly extends forward-mode AD, our algorithm lends itself to a concise implementation strategy, which we exploit to develop a prototype in just a few dozen lines of Haskell (//github.com/probcomp/adev).

相關內容

 Processing 是一門開源編程語言和與之配套的集成開發環境(IDE)的名稱。Processing 在電子藝術和視覺設計社區被用來教授編程基礎,并運用于大量的新媒體和互動藝術作品中。

Existing statistical methods can estimate a policy, or a mapping from covariates to decisions, which can then instruct decision makers (e.g., whether to administer hypotension treatment based on covariates blood pressure and heart rate). There is great interest in using such data-driven policies in healthcare. However, it is often important to explain to the healthcare provider, and to the patient, how a new policy differs from the current standard of care. This end is facilitated if one can pinpoint the aspects of the policy (i.e., the parameters for blood pressure and heart rate) that change when moving from the standard of care to the new, suggested policy. To this end, we adapt ideas from Trust Region Policy Optimization (TRPO). In our work, however, unlike in TRPO, the difference between the suggested policy and standard of care is required to be sparse, aiding with interpretability. This yields ``relative sparsity," where, as a function of a tuning parameter, $\lambda$, we can approximately control the number of parameters in our suggested policy that differ from their counterparts in the standard of care (e.g., heart rate only). We propose a criterion for selecting $\lambda$, perform simulations, and illustrate our method with a real, observational healthcare dataset, deriving a policy that is easy to explain in the context of the current standard of care. Our work promotes the adoption of data-driven decision aids, which have great potential to improve health outcomes.

With an increased focus on incorporating fairness in machine learning models, it becomes imperative not only to assess and mitigate bias at each stage of the machine learning pipeline but also to understand the downstream impacts of bias across stages. Here we consider a general, but realistic, scenario in which a predictive model is learned from (potentially biased) training data, and model predictions are assessed post-hoc for fairness by some auditing method. We provide a theoretical analysis of how a specific form of data bias, differential sampling bias, propagates from the data stage to the prediction stage. Unlike prior work, we evaluate the downstream impacts of data biases quantitatively rather than qualitatively and prove theoretical guarantees for detection. Under reasonable assumptions, we quantify how the amount of bias in the model predictions varies as a function of the amount of differential sampling bias in the data, and at what point this bias becomes provably detectable by the auditor. Through experiments on two criminal justice datasets -- the well-known COMPAS dataset and historical data from NYPD's stop and frisk policy -- we demonstrate that the theoretical results hold in practice even when our assumptions are relaxed.

We present a new proof rule for verifying lower bounds on quantities of probabilistic programs. Our proof rule is not confined to almost-surely terminating programs -- as is the case for existing rules -- and can be used to establish non-trivial lower bounds on, e.g., termination probabilities and expected values, for possibly divergent probabilistic loops, e.g., the well-known three-dimensional random walk on a lattice.

Probabilistic programs are typically normal-looking programs describing posterior probability distributions. They intrinsically code up randomized algorithms and have long been at the heart of modern machine learning and approximate computing. We explore the theory of generating functions [19] and investigate its usage in the exact quantitative reasoning of probabilistic programs. Important topics include the exact representation of program semantics [13], proving exact program equivalence [5], and -- as our main focus in this extended abstract -- exact probabilistic inference. In probabilistic programming, inference aims to derive a program's posterior distribution. In contrast to approximate inference, inferring exact distributions comes with several benefits [8], e.g., no loss of precision, natural support for symbolic parameters, and efficiency on models with certain structures. Exact probabilistic inference, however, is a notoriously hard task [6,12,17,18]. The challenges mainly arise from three program constructs: (1) unbounded while-loops and/or recursion, (2) infinite-support distributions, and (3) conditioning (via posterior observations). We present our ongoing research in addressing these challenges (with a focus on conditioning) leveraging generating functions and show their potential in facilitating exact probabilistic inference for discrete probabilistic programs.

The goal of survey design is often to minimize the errors associated with inference: the total of bias and variance. Random surveys are common because they allow the use of theoretically unbiased estimators. In practice however, such design-based approaches are often unable to account for logistical or budgetary constraints. Thus, they may result in samples that are logistically inefficient, or infeasible to implement. Various balancing and optimal sampling techniques have been proposed to improve the statistical efficiency of such designs, but few models have attempted to explicitly incorporate logistical and financial constraints. We introduce a mixed integer linear program (MILP) for optimal sampling design, capable of capturing a variety of constraints and a wide class of Bayesian regression models. We demonstrate the use of our model on three spatial sampling problems of increasing complexity, including the real logistics of the US Forest Service Forest Inventory and Analysis survey of Tanana, Alaska. Our methodological contribution to survey design is significant because the proposed modeling framework makes it possible to generate high-quality sampling designs and inferences while satisfying practical constraints defined by the user. The technical novelty of the method is the explicit integration of Bayesian statistical models in combinatorial optimization. This integration might allow a paradigm shift in spatial sampling under constrained budgets or logistics.

This thesis focuses on advancing probabilistic logic programming (PLP), which combines probability theory for uncertainty and logic programming for relations. The thesis aims to extend PLP to support both discrete and continuous random variables, which is necessary for applications with numeric data. The first contribution is the introduction of context-specific likelihood weighting (CS-LW), a new sampling algorithm that exploits context-specific independencies for computational gains. Next, a new hybrid PLP, DC#, is introduced, which integrates the syntax of Distributional Clauses with Bayesian logic programs and represents three types of independencies: i) conditional independencies (CIs) modeled in Bayesian networks; ii) context-specific independencies (CSIs) represented by logical rules, and iii) independencies amongst attributes of related objects in relational models expressed by combining rules. The scalable inference algorithm FO-CS-LW is introduced for DC#. Finally, the thesis addresses the lack of approaches for learning hybrid PLP from relational data with missing values and (probabilistic) background knowledge with the introduction of DiceML, which learns the structure and parameters of hybrid PLP and tackles the relational autocompletion problem. The conclusion discusses future directions and open challenges for hybrid PLP.

The paper addresses the problem of estimation of the model parameters of the logistic exponential distribution based on progressive type-I hybrid censored sample. The maximum likelihood estimates are obtained and computed numerically using Newton-Raphson method. Further, the Bayes estimates are derived under squared error, LINEX and generalized entropy loss functions. Two types (independent and bivariate) of prior distributions are considered for the purpose of Bayesian estimation. It is seen that the Bayes estimates are not of explicit forms.Thus, Lindley's approximation technique is employed to get approximate Bayes estimates. Interval estimates of the parameters based on normal approximate of the maximum likelihood estimates and normal approximation of the log-transformed maximum likelihood estimates are constructed. The highest posterior density credible intervals are obtained by using the importance sampling method. Furthermore, numerical computations are reported to review some of the results obtained in the paper. A real life dataset is considered for the purpose of illustrations.

In the usual Bayesian setting, a full probabilistic model is required to link the data and parameters, and the form of this model and the inference and prediction mechanisms are specified via de Finetti's representation. In general, such a formulation is not robust to model mis-specification of its component parts. An alternative approach is to draw inference based on loss functions, where the quantity of interest is defined as a minimizer of some expected loss, and to construct posterior distributions based on the loss-based formulation; this strategy underpins the construction of the Gibbs posterior. We develop a Bayesian non-parametric approach; specifically, we generalize the Bayesian bootstrap, and specify a Dirichlet process model for the distribution of the observables. We implement this using direct prior-to-posterior calculations, but also using predictive sampling. We also study the assessment of posterior validity for non-standard Bayesian calculations, and provide an efficient way to calibrate the scaling parameter in the Gibbs posterior so that it can achieve the desired coverage rate. We show that the developed non-standard Bayesian updating procedures yield valid posterior distributions in terms of consistency and asymptotic normality under model mis-specification. Simulation studies show that the proposed methods can recover the true value of the parameter efficiently and achieve frequentist coverage even when the sample size is small. Finally, we apply our methods to evaluate the causal impact of speed cameras on traffic collisions in England.

Uncertainty analysis in the outcomes of model predictions is a key element in decision-based material design to establish confidence in the models and evaluate the fidelity of models. Uncertainty Propagation (UP) is a technique to determine model output uncertainties based on the uncertainty in its input variables. The most common and simplest approach to propagate the uncertainty from a model inputs to its outputs is by feeding a large number of samples to the model, known as Monte Carlo (MC) simulation which requires exhaustive sampling from the input variable distributions. However, MC simulations are impractical when models are computationally expensive. In this work, we investigate the hypothesis that while all samples are useful on average, some samples must be more useful than others. Thus, reordering MC samples and propagating more useful samples can lead to enhanced convergence in statistics of interest earlier and thus, reducing the computational burden of UP process. Here, we introduce a methodology to adaptively reorder MC samples and show how it results in reduction of computational expense of UP processes.

Classic algorithms and machine learning systems like neural networks are both abundant in everyday life. While classic computer science algorithms are suitable for precise execution of exactly defined tasks such as finding the shortest path in a large graph, neural networks allow learning from data to predict the most likely answer in more complex tasks such as image classification, which cannot be reduced to an exact algorithm. To get the best of both worlds, this thesis explores combining both concepts leading to more robust, better performing, more interpretable, more computationally efficient, and more data efficient architectures. The thesis formalizes the idea of algorithmic supervision, which allows a neural network to learn from or in conjunction with an algorithm. When integrating an algorithm into a neural architecture, it is important that the algorithm is differentiable such that the architecture can be trained end-to-end and gradients can be propagated back through the algorithm in a meaningful way. To make algorithms differentiable, this thesis proposes a general method for continuously relaxing algorithms by perturbing variables and approximating the expectation value in closed form, i.e., without sampling. In addition, this thesis proposes differentiable algorithms, such as differentiable sorting networks, differentiable renderers, and differentiable logic gate networks. Finally, this thesis presents alternative training strategies for learning with algorithms.

北京阿比特科技有限公司