亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We develop a new method that improves the efficiency of equation-by-equation algorithms for solving polynomial systems. Our method is based on a novel geometric construction, and reduces the total number of homotopy paths that must be numerically continued. These improvements may be applied to the basic algorithms of numerical algebraic geometry in the settings of both projective and multiprojective varieties. Our computational experiments demonstrate significant savings obtained on several benchmark systems. We also present an extended case study on maximum likelihood estimation for rank-constrained symmetric $n\times n$ matrices, in which multiprojective $u$-generation allows us to complete the list of ML degrees for $n\le 6.$

相關內容

The stochastic generalised linear bandit is a well-understood model for sequential decision-making problems, with many algorithms achieving near-optimal regret guarantees under immediate feedback. However, in many real world settings, the requirement that the reward is observed immediately is not applicable. In this setting, standard algorithms are no longer theoretically understood. We study the phenomenon of delayed rewards in a theoretical manner by introducing a delay between selecting an action and receiving the reward. Subsequently, we show that an algorithm based on the optimistic principle improves on existing approaches for this setting by eliminating the need for prior knowledge of the delay distribution and relaxing assumptions on the decision set and the delays. This also leads to improving the regret guarantees from $ \widetilde O(\sqrt{dT}\sqrt{d + \mathbb{E}[\tau]})$ to $ \widetilde O(d\sqrt{T} + d^{3/2}\mathbb{E}[\tau])$, where $\mathbb{E}[\tau]$ denotes the expected delay, $d$ is the dimension and $T$ the time horizon and we have suppressed logarithmic terms. We verify our theoretical results through experiments on simulated data.

We are motivated by the problem of learning policies for robotic systems with rich sensory inputs (e.g., vision) in a manner that allows us to guarantee generalization to environments unseen during training. We provide a framework for providing such generalization guarantees by leveraging a finite dataset of real-world environments in combination with a (potentially inaccurate) generative model of environments. The key idea behind our approach is to utilize the generative model in order to implicitly specify a prior over policies. This prior is updated using the real-world dataset of environments by minimizing an upper bound on the expected cost across novel environments derived via Probably Approximately Correct (PAC)-Bayes generalization theory. We demonstrate our approach on two simulated systems with nonlinear/hybrid dynamics and rich sensing modalities: (i) quadrotor navigation with an onboard vision sensor, and (ii) grasping objects using a depth sensor. Comparisons with prior work demonstrate the ability of our approach to obtain stronger generalization guarantees by utilizing generative models. We also present hardware experiments for validating our bounds for the grasping task.

The spatio-spectral total variation (SSTV) model has been widely used as an effective regularization of hyperspectral images (HSI) for various applications such as mixed noise removal. However, since SSTV computes local spatial differences uniformly, it is difficult to remove noise while preserving complex spatial structures with fine edges and textures, especially in situations of high noise intensity. To solve this problem, we propose a new TV-type regularization called Graph-SSTV (GSSTV), which generates a graph explicitly reflecting the spatial structure of the target HSI from noisy HSIs and incorporates a weighted spatial difference operator designed based on this graph. Furthermore, we formulate the mixed noise removal problem as a convex optimization problem involving GSSTV and develop an efficient algorithm based on the primal-dual splitting method to solve this problem. Finally, we demonstrate the effectiveness of GSSTV compared with existing HSI regularization models through experiments on mixed noise removal. The source code will be available at //www.mdi.c.titech.ac.jp/publications/gsstv.

Subset-Sum is an NP-complete problem where one must decide if a multiset of $n$ integers contains a subset whose elements sum to a target value $m$. The best-known classical and quantum algorithms run in time $\tilde{O}(2^{n/2})$ and $\tilde{O}(2^{n/3})$, respectively, based on the well-known meet-in-the-middle technique. Here we introduce a novel classical dynamic-programming-based data structure with applications to Subset-Sum and a number of variants, including Equal-Sums (where one seeks two disjoint subsets with the same sum), 2-Subset-Sum (a relaxed version of Subset-Sum where each item in the input set can be used twice in the summation), and Shifted-Sums, a generalization of both of these variants, where one seeks two disjoint subsets whose sums differ by some specified value. Given any modulus $p$, our data structure can be constructed in time $O(n^2p)$, after which queries can be made in time $O(n^2)$ to the lists of subsets summing to any value modulo $p$. We use this data structure in combination with variable-time amplitude amplification and a new quantum pair finding algorithm, extending the quantum claw finding algorithm to the multiple solutions case, to give an $O(2^{0.504n})$ quantum algorithm for Shifted-Sums, an improvement on the best-known $O(2^{0.773n})$ classical running time. Incidentally, we obtain new $\tilde{O}(2^{n/2})$ and $\tilde{O}(2^{n/3})$ classical and quantum algorithms for Subset-Sum, not based on the seminal meet-in-the-middle method. We also study Pigeonhole Equal-Sums and Pigeonhole Modular Equal-Sums, where the existence of a solution is guaranteed by the pigeonhole principle. For the former problem, we give faster classical and quantum algorithms with running time $\tilde{O}(2^{n/2})$ and $\tilde{O}(2^{2n/5})$, respectively. For the more general modular problem, we give a classical algorithm that also runs in time $\tilde{O}(2^{n/2})$.

With the aid of hardware and software developments, there has been a surge of interests in solving partial differential equations by deep learning techniques, and the integration with domain decomposition strategies has recently attracted considerable attention due to its enhanced representation and parallelization capacity of the network solution. While there are already several works that substitute the numerical solver of overlapping Schwarz methods with the deep learning approach, the non-overlapping counterpart has not been thoroughly studied yet because of the inevitable interface overfitting problem that would propagate the errors to neighbouring subdomains and eventually hamper the convergence of outer iteration. In this work, a novel learning approach, i.e., the compensated deep Ritz method, is proposed to enable the flux transmission across subregion interfaces with guaranteed accuracy, thereby allowing us to construct effective learning algorithms for realizing the more general non-overlapping domain decomposition methods in the presence of overfitted interface conditions. Numerical experiments on a series of elliptic boundary value problems including the regular and irregular interfaces, low and high dimensions, smooth and high-contrast coefficients on multidomains are carried out to validate the effectiveness of our proposed domain decomposition learning algorithms.

The flow-driven spectral chaos (FSC) is a recently developed method for tracking and quantifying uncertainties in the long-time response of stochastic dynamical systems using the spectral approach. The method uses a novel concept called 'enriched stochastic flow maps' as a means to construct an evolving finite-dimensional random function space that is both accurate and computationally efficient in time. In this paper, we present a multi-element version of the FSC method (the ME-FSC method for short) to tackle (mainly) those dynamical systems that are inherently discontinuous over the probability space. In ME-FSC, the random domain is partitioned into several elements, and then the problem is solved separately on each random element using the FSC method. Subsequently, results are aggregated to compute the probability moments of interest using the law of total probability. To demonstrate the effectiveness of the ME-FSC method in dealing with discontinuities and long-time integration of stochastic dynamical systems, four representative numerical examples are presented in this paper, including the Van-der-Pol oscillator problem and the Kraichnan-Orszag three-mode problem. Results show that the ME-FSC method is capable of solving problems that have strong nonlinear dependencies over the probability space, both reliably and at low computational cost.

This paper examines whether one can learn to play an optimal action while only knowing part of true specification of the environment. We choose the optimal pricing problem as our laboratory, where the monopolist is endowed with an underspecified model of the market demand, but can observe market outcomes. In contrast to conventional learning models where the model specification is complete and exogenously fixed, the monopolist has to learn the specification and the parameters of the demand curve from the data. We formulate the learning dynamics as an algorithm that forecast the optimal price based on the data, following the machine learning literature (Shalev-Shwartz and Ben-David (2014)). Inspired by PAC learnability, we develop a new notion of learnability by requiring that the algorithm must produce an accurate forecast with a reasonable amount of data uniformly over the class of models consistent with the part of the true specification. In addition, we assume that the monopolist has a lexicographic preference over the payoff and the complexity cost of the algorithm, seeking an algorithm with a minimum number of parameters subject to PAC-guaranteeing the optimal solution (Rubinstein (1986)). We show that for the set of demand curves with strictly decreasing uniformly Lipschitz continuous marginal revenue curve, the optimal algorithm recursively estimates the slope and the intercept of the linear demand curve, even if the actual demand curve is not linear. The monopolist chooses a misspecified model to save computational cost, while learning the true optimal decision uniformly over the set of underspecified demand curves.

The increasing penetration of distributed energy resources in low-voltage networks is turning end-users from consumers to prosumers. However, the incomplete smart meter rollout and paucity of smart meter data due to the regulatory separation between retail and network service provision make active distribution network management difficult. Furthermore, distribution network operators oftentimes do not have access to real-time smart meter data, which creates an additional challenge. For the lack of better solutions, they use blanket rooftop solar export limits, leading to suboptimal outcomes. To address this, we designed a conditional generative adversarial network (CGAN)-based model to forecast household solar generation and electricity demand, which serves as an input to chance-constrained optimal power flow used to compute fair operating envelopes under uncertainty.

Recommender systems play a fundamental role in web applications in filtering massive information and matching user interests. While many efforts have been devoted to developing more effective models in various scenarios, the exploration on the explainability of recommender systems is running behind. Explanations could help improve user experience and discover system defects. In this paper, after formally introducing the elements that are related to model explainability, we propose a novel explainable recommendation model through improving the transparency of the representation learning process. Specifically, to overcome the representation entangling problem in traditional models, we revise traditional graph convolution to discriminate information from different layers. Also, each representation vector is factorized into several segments, where each segment relates to one semantic aspect in data. Different from previous work, in our model, factor discovery and representation learning are simultaneously conducted, and we are able to handle extra attribute information and knowledge. In this way, the proposed model can learn interpretable and meaningful representations for users and items. Unlike traditional methods that need to make a trade-off between explainability and effectiveness, the performance of our proposed explainable model is not negatively affected after considering explainability. Finally, comprehensive experiments are conducted to validate the performance of our model as well as explanation faithfulness.

To address the sparsity and cold start problem of collaborative filtering, researchers usually make use of side information, such as social networks or item attributes, to improve recommendation performance. This paper considers the knowledge graph as the source of side information. To address the limitations of existing embedding-based and path-based methods for knowledge-graph-aware recommendation, we propose Ripple Network, an end-to-end framework that naturally incorporates the knowledge graph into recommender systems. Similar to actual ripples propagating on the surface of water, Ripple Network stimulates the propagation of user preferences over the set of knowledge entities by automatically and iteratively extending a user's potential interests along links in the knowledge graph. The multiple "ripples" activated by a user's historically clicked items are thus superposed to form the preference distribution of the user with respect to a candidate item, which could be used for predicting the final clicking probability. Through extensive experiments on real-world datasets, we demonstrate that Ripple Network achieves substantial gains in a variety of scenarios, including movie, book and news recommendation, over several state-of-the-art baselines.

北京阿比特科技有限公司