We consider the infinite-horizon, average-reward restless bandit problem in discrete time. We propose a new class of policies that are designed to drive a progressively larger subset of arms toward the optimal distribution. We show that our policies are asymptotically optimal with an $O(1/\sqrt{N})$ optimality gap for an $N$-armed problem, provided that the single-armed relaxed problem is unichain and aperiodic. Our approach departs from most existing work that focuses on index or priority policies, which rely on the Uniform Global Attractor Property (UGAP) to guarantee convergence to the optimum, or a recently developed simulation-based policy, which requires a Synchronization Assumption (SA).
Neural Language Models of Code, or Neural Code Models (NCMs), are rapidly progressing from research prototypes to commercial developer tools. As such, understanding the capabilities and limitations of such models is becoming critical. However, the abilities of these models are typically measured using automated metrics that often only reveal a portion of their real-world performance. While, in general, the performance of NCMs appears promising, currently much is unknown about how such models arrive at decisions. To this end, this paper introduces $do_{code}$, a post hoc interpretability method specific to NCMs that is capable of explaining model predictions. $do_{code}$ is based upon causal inference to enable programming language-oriented explanations. While the theoretical underpinnings of $do_{code}$ are extensible to exploring different model properties, we provide a concrete instantiation that aims to mitigate the impact of spurious correlations by grounding explanations of model behavior in properties of programming languages. To demonstrate the practical benefit of $do_{code}$, we illustrate the insights that our framework can provide by performing a case study on two popular deep learning architectures and ten NCMs. The results of this case study illustrate that our studied NCMs are sensitive to changes in code syntax. All our NCMs, except for the BERT-like model, statistically learn to predict tokens related to blocks of code (\eg brackets, parenthesis, semicolon) with less confounding bias as compared to other programming language constructs. These insights demonstrate the potential of $do_{code}$ as a useful method to detect and facilitate the elimination of confounding bias in NCMs.
High-resolution fMRI provides a window into the brain's mesoscale organization. Yet, higher spatial resolution increases scan times, to compensate for the low signal and contrast-to-noise ratio. This work introduces a deep learning-based 3D super-resolution (SR) method for fMRI. By incorporating a resolution-agnostic image augmentation framework, our method adapts to varying voxel sizes without retraining. We apply this innovative technique to localize fine-scale motion-selective sites in the early visual areas. Detection of these sites typically requires a resolution higher than 1 mm isotropic, whereas here, we visualize them based on lower resolution (2-3mm isotropic) fMRI data. Remarkably, the super-resolved fMRI is able to recover high-frequency detail of the interdigitated organization of these sites (relative to the color-selective sites), even with training data sourced from different subjects and experimental paradigms -- including non-visual resting-state fMRI, underscoring its robustness and versatility. Quantitative and qualitative results indicate that our method has the potential to enhance the spatial resolution of fMRI, leading to a drastic reduction in acquisition time.
Pretrained Language Models (PLMs) have advanced Natural Language Processing (NLP) tasks significantly, but finetuning PLMs on low-resource datasets poses significant challenges such as instability and overfitting. Previous methods tackle these issues by finetuning a strategically chosen subnetwork on a downstream task, while keeping the remaining weights fixed to the pretrained weights. However, they rely on a suboptimal criteria for sub-network selection, leading to suboptimal solutions. To address these limitations, we propose a regularization method based on attention-guided weight mixup for finetuning PLMs. Our approach represents each network weight as a mixup of task-specific weight and pretrained weight, controlled by a learnable attention parameter, providing finer control over sub-network selection. Furthermore, we employ a bi-level optimization (BLO) based framework on two separate splits of the training dataset, improving generalization and combating overfitting. We validate the efficacy of our proposed method through extensive experiments, demonstrating its superiority over previous methods, particularly in the context of finetuning PLMs on low-resource datasets.
Spacecraft operations are highly critical, demanding impeccable reliability and safety. Ensuring the optimal performance of a spacecraft requires the early detection and mitigation of anomalies, which could otherwise result in unit or mission failures. With the advent of deep learning, a surge of interest has been seen in leveraging these sophisticated algorithms for anomaly detection in space operations. This study aims to compare the efficacy of various deep learning architectures in detecting anomalies in spacecraft data. The deep learning models under investigation include Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Long Short-Term Memory (LSTM) networks, and Transformer-based architectures. Each of these models was trained and validated using a comprehensive dataset sourced from multiple spacecraft missions, encompassing diverse operational scenarios and anomaly types. Initial results indicate that while CNNs excel in identifying spatial patterns and may be effective for some classes of spacecraft data, LSTMs and RNNs show a marked proficiency in capturing temporal anomalies seen in time-series spacecraft telemetry. The Transformer-based architectures, given their ability to focus on both local and global contexts, have showcased promising results, especially in scenarios where anomalies are subtle and span over longer durations. Additionally, considerations such as computational efficiency, ease of deployment, and real-time processing capabilities were evaluated. While CNNs and LSTMs demonstrated a balance between accuracy and computational demands, Transformer architectures, though highly accurate, require significant computational resources. In conclusion, the choice of deep learning architecture for spacecraft anomaly detection is highly contingent on the nature of the data, the type of anomalies, and operational constraints.
AI assistants for coding are on the rise. However one of the reasons developers and companies avoid harnessing their full potential is the questionable security of the generated code. This paper first reviews the current state-of-the-art and identifies areas for improvement on this issue. Then, we propose a systematic approach based on prompt-altering methods to achieve better code security of (even proprietary black-box) AI-based code generators such as GitHub Copilot, while minimizing the complexity of the application from the user point-of-view, the computational resources, and operational costs. In sum, we propose and evaluate three prompt altering methods: (1) scenario-specific, (2) iterative, and (3) general clause, while we discuss their combination. Contrary to the audit of code security, the latter two of the proposed methods require no expert knowledge from the user. We assess the effectiveness of the proposed methods on the GitHub Copilot using the OpenVPN project in realistic scenarios, and we demonstrate that the proposed methods reduce the number of insecure generated code samples by up to 16\% and increase the number of secure code by up to 8\%. Since our approach does not require access to the internals of the AI models, it can be in general applied to any AI-based code synthesizer, not only GitHub Copilot.
Australia is a leading AI nation with strong allies and partnerships. Australia has prioritised robotics, AI, and autonomous systems to develop sovereign capability for the military. Australia commits to Article 36 reviews of all new means and methods of warfare to ensure weapons and weapons systems are operated within acceptable systems of control. Additionally, Australia has undergone significant reviews of the risks of AI to human rights and within intelligence organisations and has committed to producing ethics guidelines and frameworks in Security and Defence. Australia is committed to OECD's values-based principles for the responsible stewardship of trustworthy AI as well as adopting a set of National AI ethics principles. While Australia has not adopted an AI governance framework specifically for Defence; Defence Science has published 'A Method for Ethical AI in Defence' (MEAID) technical report which includes a framework and pragmatic tools for managing ethical and legal risks for military applications of AI.
Since the cyberspace consolidated as fifth warfare dimension, the different actors of the defense sector began an arms race toward achieving cyber superiority, on which research, academic and industrial stakeholders contribute from a dual vision, mostly linked to a large and heterogeneous heritage of developments and adoption of civilian cybersecurity capabilities. In this context, augmenting the conscious of the context and warfare environment, risks and impacts of cyber threats on kinetic actuations became a critical rule-changer that military decision-makers are considering. A major challenge on acquiring mission-centric Cyber Situational Awareness (CSA) is the dynamic inference and assessment of the vertical propagations from situations that occurred at the mission supportive Information and Communications Technologies (ICT), up to their relevance at military tactical, operational and strategical views. In order to contribute on acquiring CSA, this paper addresses a major gap in the cyber defence state-of-the-art: the dynamic identification of Key Cyber Terrains (KCT) on a mission-centric context. Accordingly, the proposed KCT identification approach explores the dependency degrees among tasks and assets defined by commanders as part of the assessment criteria. These are correlated with the discoveries on the operational network and the asset vulnerabilities identified thorough the supported mission development. The proposal is presented as a reference model that reveals key aspects for mission-centric KCT analysis and supports its enforcement and further enforcement by including an illustrative application case.
The military is investigating methods to improve communication and agility in its multi-domain operations (MDO). Nascent popularity of Internet of Things (IoT) has gained traction in public and government domains. Its usage in MDO may revolutionize future battlefields and may enable strategic advantage. While this technology offers leverage to military capabilities, it comes with challenges where one is the uncertainty and associated risk. A key question is how can these uncertainties be addressed. Recently published studies proposed information camouflage to transform information from one data domain to another. As this is comparatively a new approach, we investigate challenges of such transformations and how these associated uncertainties can be detected and addressed, specifically unknown-unknowns to improve decision-making.
Defensive deception is a promising approach for cyberdefense. Although defensive deception is increasingly popular in the research community, there has not been a systematic investigation of its key components, the underlying principles, and its tradeoffs in various problem settings. This survey paper focuses on defensive deception research centered on game theory and machine learning, since these are prominent families of artificial intelligence approaches that are widely employed in defensive deception. This paper brings forth insights, lessons, and limitations from prior work. It closes with an outline of some research directions to tackle major gaps in current defensive deception research.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.