亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We have developed an efficient and unconditionally energy-stable method for simulating droplet formation dynamics. Our approach involves a novel time-marching scheme based on the scalar auxiliary variable technique, specifically designed for solving the Cahn-Hilliard-Navier-Stokes phase field model with variable density and viscosity. We have successfully applied this method to simulate droplet formation in scenarios where a Newtonian fluid is injected through a vertical tube into another immiscible Newtonian fluid. To tackle the challenges posed by nonhomogeneous Dirichlet boundary conditions at the tube entrance, we have introduced additional nonlocal auxiliary variables and associated ordinary differential equations. These additions effectively eliminate the influence of boundary terms. Moreover, we have incorporated stabilization terms into the scheme to enhance its numerical effectiveness. Notably, our resulting scheme is fully decoupled, requiring the solution of only linear systems at each time step. We have also demonstrated the energy decaying property of the scheme, with suitable modifications. To assess the accuracy and stability of our algorithm, we have conducted extensive numerical simulations. Additionally, we have examined the dynamics of droplet formation and explored the impact of dimensionless parameters on the process. Overall, our work presents a refined method for simulating droplet formation dynamics, offering improved efficiency, energy stability, and accuracy.

相關內容

機器學習系統設計系統評估標準

The subject of this work is an adaptive stochastic Galerkin finite element method for parametric or random elliptic partial differential equations, which generates sparse product polynomial expansions with respect to the parametric variables of solutions. For the corresponding spatial approximations, an independently refined finite element mesh is used for each polynomial coefficient. The method relies on multilevel expansions of input random fields and achieves error reduction with uniform rate. In particular, the saturation property for the refinement process is ensured by the algorithm. The results are illustrated by numerical experiments, including cases with random fields of low regularity.

Lattices are architected metamaterials whose properties strongly depend on their geometrical design. The analogy between lattices and graphs enables the use of graph neural networks (GNNs) as a faster surrogate model compared to traditional methods such as finite element modelling. In this work, we generate a big dataset of structure-property relationships for strut-based lattices. The dataset is made available to the community which can fuel the development of methods anchored in physical principles for the fitting of fourth-order tensors. In addition, we present a higher-order GNN model trained on this dataset. The key features of the model are (i) SE(3) equivariance, and (ii) consistency with the thermodynamic law of conservation of energy. We compare the model to non-equivariant models based on a number of error metrics and demonstrate its benefits in terms of predictive performance and reduced training requirements. Finally, we demonstrate an example application of the model to an architected material design task. The methods which we developed are applicable to fourth-order tensors beyond elasticity such as piezo-optical tensor etc.

Mixed methods for linear elasticity with strongly symmetric stresses of lowest order are studied in this paper. On each simplex, the stress space has piecewise linear components with respect to its Alfeld split (which connects the vertices to barycenter), generalizing the Johnson-Mercier two-dimensional element to higher dimensions. Further reductions in the stress space in the three-dimensional case (to 24 degrees of freedom per tetrahedron) are possible when the displacement space is reduced to local rigid displacements. Proofs of optimal error estimates of numerical solutions and improved error estimates via postprocessing and the duality argument are presented.

We present a finite element approach for diffusion problems with thermal fluctuations based on a fluctuating hydrodynamics model. The governing transport equations are stochastic partial differential equations with a fluctuating forcing term. We propose a discrete formulation of the stochastic forcing term that has the correct covariance matrix up to a standard discretization error. Furthermore, to obtain a numerical solution with spatial correlations that converge to those of the continuum equation, we derive a linear mapping to transform the finite element solution into an equivalent discrete solution that is free from the artificial correlations introduced by the spatial discretization. The method is validated by applying it to two diffusion problems: a second-order diffusion equation and a fourth-order diffusion equation. The theoretical (continuum) solution to the first case presents spatially decorrelated fluctuations, while the second case presents fluctuations correlated over a finite length. In both cases, the numerical solution presents a structure factor that approximates well the continuum one.

A simplified kinetic description of rapid granular media leads to a nonlocal Vlasov-type equation with a convolution integral operator that is of the same form as the continuity equations for aggregation-diffusion macroscopic dynamics. While the singular behavior of these nonlinear continuity equations is well studied in the literature, the extension to the corresponding granular kinetic equation is highly nontrivial. The main question is whether the singularity formed in velocity direction will be enhanced or mitigated by the shear in phase space due to free transport. We present a preliminary study through a meticulous numerical investigation and heuristic arguments. We have numerically developed a structure-preserving method with adaptive mesh refinement that can effectively capture potential blow-up behavior in the solution for granular kinetic equations. We have analytically constructed a finite-time blow-up infinite mass solution and discussed how this can provide insights into the finite mass scenario.

We consider the fundamental task of optimising a real-valued function defined in a potentially high-dimensional Euclidean space, such as the loss function in many machine-learning tasks or the logarithm of the probability distribution in statistical inference. We use Riemannian geometry notions to redefine the optimisation problem of a function on the Euclidean space to a Riemannian manifold with a warped metric, and then find the function's optimum along this manifold. The warped metric chosen for the search domain induces a computational friendly metric-tensor for which optimal search directions associated with geodesic curves on the manifold becomes easier to compute. Performing optimization along geodesics is known to be generally infeasible, yet we show that in this specific manifold we can analytically derive Taylor approximations up to third-order. In general these approximations to the geodesic curve will not lie on the manifold, however we construct suitable retraction maps to pull them back onto the manifold. Therefore, we can efficiently optimize along the approximate geodesic curves. We cover the related theory, describe a practical optimization algorithm and empirically evaluate it on a collection of challenging optimisation benchmarks. Our proposed algorithm, using 3rd-order approximation of geodesics, tends to outperform standard Euclidean gradient-based counterparts in term of number of iterations until convergence.

Stability and optimal convergence analysis of a non-uniform implicit-explicit L1 finite element method (IMEX-L1-FEM) is studied for a class of time-fractional linear partial differential/integro-differential equations with non-self-adjoint elliptic part having (space-time) variable coefficients. The proposed scheme is based on a combination of an IMEX-L1 method on graded mesh in the temporal direction and a finite element method in the spatial direction. With the help of a discrete fractional Gr\"{o}nwall inequality, global almost optimal error estimates in $L^2$- and $H^1$-norms are derived for the problem with initial data $u_0 \in H_0^1(\Omega)\cap H^2(\Omega)$. The novelty of our approach is based on managing the interaction of the L1 approximation of the fractional derivative and the time discrete elliptic operator to derive the optimal estimate in $H^1$-norm directly. Furthermore, a super convergence result is established when the elliptic operator is self-adjoint with time and space varying coefficients, and as a consequence, an $L^\infty$ error estimate is obtained for 2D problems that too with the initial condition is in $ H_0^1(\Omega)\cap H^2(\Omega)$. All results proved in this paper are valid uniformly as $\alpha\longrightarrow 1^{-}$, where $\alpha$ is the order of the Caputo fractional derivative. Numerical experiments are presented to validate our theoretical findings.

Adaptiveness is a key principle in information processing including statistics and machine learning. We investigate the usefulness of adaptive methods in the framework of asymptotic binary hypothesis testing, when each hypothesis represents asymptotically many independent instances of a quantum channel, and the tests are based on using the unknown channel and observing outputs. Unlike the familiar setting of quantum states as hypotheses, there is a fundamental distinction between adaptive and non-adaptive strategies with respect to the channel uses, and we introduce a number of further variants of the discrimination tasks by imposing different restrictions on the test strategies. The following results are obtained: (1) We prove that for classical-quantum channels, adaptive and non-adaptive strategies lead to the same error exponents both in the symmetric (Chernoff) and asymmetric (Hoeffding, Stein) settings. (2) The first separation between adaptive and non-adaptive symmetric hypothesis testing exponents for quantum channels, which we derive from a general lower bound on the error probability for non-adaptive strategies; the concrete example we analyze is a pair of entanglement-breaking channels. (3)We prove, in some sense generalizing the previous statement, that for general channels adaptive strategies restricted to classical feed-forward and product state channel inputs are not superior in the asymptotic limit to non-adaptive product state strategies. (4) As an application of our findings, we address the discrimination power of an arbitrary quantum channel and show that adaptive strategies with classical feedback and no quantum memory at the input do not increase the discrimination power of the channel beyond non-adaptive tensor product input strategies.

We establish an invariance principle for polynomial functions of $n$ independent high-dimensional random vectors, and also show that the obtained rates are nearly optimal. Both the dimension of the vectors and the degree of the polynomial are permitted to grow with $n$. Specifically, we obtain a finite sample upper bound for the error of approximation by a polynomial of Gaussians, measured in Kolmogorov distance, and extend it to functions that are approximately polynomial in a mean squared error sense. We give a corresponding lower bound that shows the invariance principle holds up to polynomial degree $o(\log n)$. The proof is constructive and adapts an asymmetrisation argument due to V. V. Senatov. As applications, we obtain a higher-order delta method with possibly non-Gaussian limits, and generalise a number of known results on high-dimensional and infinite-order U-statistics, and on fluctuations of subgraph counts.

We investigate a convective Brinkman--Forchheimer problem coupled with a heat transfer equation. The investigated model considers thermal diffusion and viscosity depending on the temperature. We prove the existence of a solution without restriction on the data and uniqueness when the solution is slightly smoother and the data is suitably restricted. We propose a finite element discretization scheme for the considered model and derive convergence results and a priori error estimates. Finally, we illustrate the theory with numerical examples.

北京阿比特科技有限公司