A support structure is required to successfully create structural parts in the powder bed fusion process for additive manufacturing. In this study, we present the topology optimization of a support structure that improves the heat dissipation in the building process. First, we construct a numerical method that obtains the temperature field in the building process, represented by the transient heat conduction phenomenon with the volume heat flux. Next, we formulate an optimization problem for maximizing heat dissipation and develop an optimization algorithm that incorporates a level-set-based topology optimization. A sensitivity of the objective function is derived using the adjoint variable method. Finally, several numerical examples are provided to demonstrate the effectiveness and validity of the proposed method.
Automated vehicles require the ability to cooperate with humans for smooth integration into today's traffic. While the concept of cooperation is well known, developing a robust and efficient cooperative trajectory planning method is still a challenge. One aspect of this challenge is the uncertainty surrounding the state of the environment due to limited sensor accuracy. This uncertainty can be represented by a Partially Observable Markov Decision Process. Our work addresses this problem by extending an existing cooperative trajectory planning approach based on Monte Carlo Tree Search for continuous action spaces. It does so by explicitly modeling uncertainties in the form of a root belief state, from which start states for trees are sampled. After the trees have been constructed with Monte Carlo Tree Search, their results are aggregated into return distributions using kernel regression. We apply two risk metrics for the final selection, namely a Lower Confidence Bound and a Conditional Value at Risk. It can be demonstrated that the integration of risk metrics in the final selection policy consistently outperforms a baseline in uncertain environments, generating considerably safer trajectories.
We introduce a new constrained optimization method for policy gradient reinforcement learning, which uses two trust regions to regulate each policy update. In addition to using the proximity of one single old policy as the first trust region as done by prior works, we propose to form a second trust region through the construction of another virtual policy that represents a wide range of past policies. We then enforce the new policy to stay closer to the virtual policy, which is beneficial in case the old policy performs badly. More importantly, we propose a mechanism to automatically build the virtual policy from a memory buffer of past policies, providing a new capability for dynamically selecting appropriate trust regions during the optimization process. Our proposed method, dubbed as Memory-Constrained Policy Optimization (MCPO), is examined on a diverse suite of environments including robotic locomotion control, navigation with sparse rewards and Atari games, consistently demonstrating competitive performance against recent on-policy constrained policy gradient methods.
The number of information systems (IS) studies dealing with explainable artificial intelligence (XAI) is currently exploding as the field demands more transparency about the internal decision logic of machine learning (ML) models. However, most techniques subsumed under XAI provide post-hoc-analytical explanations, which have to be considered with caution as they only use approximations of the underlying ML model. Therefore, our paper investigates a series of intrinsically interpretable ML models and discusses their suitability for the IS community. More specifically, our focus is on advanced extensions of generalized additive models (GAM) in which predictors are modeled independently in a non-linear way to generate shape functions that can capture arbitrary patterns but remain fully interpretable. In our study, we evaluate the prediction qualities of five GAMs as compared to six traditional ML models and assess their visual outputs for model interpretability. On this basis, we investigate their merits and limitations and derive design implications for further improvements.
Data collection and research methodology represents a critical part of the research pipeline. On the one hand, it is important that we collect data in a way that maximises the validity of what we are measuring, which may involve the use of long scales with many items. On the other hand, collecting a large number of items across multiple scales results in participant fatigue, and expensive and time consuming data collection. It is therefore important that we use the available resources optimally. In this work, we consider how a consideration for theory and the associated causal/structural model can help us to streamline data collection procedures by not wasting time collecting data for variables which are not causally critical for subsequent analysis. This not only saves time and enables us to redirect resources to attend to other variables which are more important, but also increases research transparency and the reliability of theory testing. In order to achieve this streamlined data collection, we leverage structural models, and Markov conditional independency structures implicit in these models to identify the substructures which are critical for answering a particular research question. In this work, we review the relevant concepts and present a number of didactic examples with the hope that psychologists can use these techniques to streamline their data collection process without invalidating the subsequent analysis. We provide a number of simulation results to demonstrate the limited analytical impact of this streamlining.
We consider M-estimation problems, where the target value is determined using a minimizer of an expected functional of a Levy process. With discrete observations from the Levy process, we can produce a "quasi-path" by shuffling increments of the Levy process, we call it a quasi-process. Under a suitable sampling scheme, a quasi-process can converge weakly to the true process according to the properties of the stationary and independent increments. Using this resampling technique, we can estimate objective functionals similar to those estimated using the Monte Carlo simulations, and it is available as a contrast function. The M-estimator based on these quasi-processes can be consistent and asymptotically normal.
In this article we suggest two discretization methods based on isogeometric analysis (IGA) for planar linear elasticity. On the one hand, we apply the well-known ansatz of weakly imposed symmetry for the stress tensor and obtain a well-posed mixed formulation. Such modified mixed problems have been already studied by different authors. But we concentrate on the exploitation of IGA results to handle also curved boundary geometries. On the other hand, we consider the more complicated situation of strong symmetry, i.e. we discretize the mixed weak form determined by the so-called Hellinger-Reissner variational principle. We show the existence of suitable approximate fields leading to an inf-sup stable saddle-point problem. For both discretization approaches we prove convergence statements and in case of weak symmetry we illustrate the approximation behavior by means of several numerical experiments.
We consider smooth optimization problems with a Hermitian positive semi-definite fixed-rank constraint, where a quotient geometry with three Riemannian metrics $g^i(\cdot, \cdot)$ $(i=1,2,3)$ is used to represent this constraint. By taking the nonlinear conjugate gradient method (CG) as an example, we show that CG on the quotient geometry with metric $g^1$ is equivalent to CG on the factor-based optimization framework, which is often called the Burer--Monteiro approach. We also show that CG on the quotient geometry with metric $g^3$ is equivalent to CG on the commonly-used embedded geometry. We call two CG methods equivalent if they produce an identical sequence of iterates $\{X_k\}$. In addition, we show that if the limit point of the sequence $\{X_k\}$ generated by an algorithm has lower rank, that is $X_k\in \mathbb C^{n\times n}, k = 1, 2, \ldots$ has rank $p$ and the limit point $X_*$ has rank $r < p$, then the condition number of the Riemannian Hessian with metric $g^1$ can be unbounded, but those of the other two metrics stay bounded. Numerical experiments show that the Burer--Monteiro CG method has slower local convergence rate if the limit point has a reduced rank, compared to CG on the quotient geometry under the other two metrics. This slower convergence rate can thus be attributed to the large condition number of the Hessian near a minimizer.
This paper presents a density-based topology optimization approach considering additive manufacturing limitations. The presented method considers the minimum size of parts, the minimum size of cavities, the inability of printing overhanging parts without the use of sacrificial supporting structures, and the printing directions. These constraints are geometrically addressed and implemented. The minimum size on solid and void zones is imposed through a well-known filtering technique. The sacrificial support material is reduced using a constraint that limits the maximum overhang angle of parts by comparing the structural gradient with a critical reference slope. Due to the local nature of the gradient, the chosen restriction is prone to introduce parts that meet the structural slope but that may not be self-supporting. The restriction limits the maximum overhang angle for a user-defined printing direction, which could reduce structural performance if the orientation is not properly selected. To ease these challenges, a new approach to reduce the introduction of such non-self-supporting parts and a novel method that includes different printing directions in the maximum overhang angle constraint are presented. The proposed strategy for considering the minimum size of solid and void phases, maximum overhang angle, and printing direction, is illustrated by solving a set of 2D benchmark design problems including stiff structures and compliant mechanisms. We also provide MATLAB codes in the appendix for educational purposes and for replication of the results.
Reinforcement learning (RL) has shown great success in solving many challenging tasks via use of deep neural networks. Although using deep learning for RL brings immense representational power, it also causes a well-known sample-inefficiency problem. This means that the algorithms are data-hungry and require millions of training samples to converge to an adequate policy. One way to combat this issue is to use action advising in a teacher-student framework, where a knowledgeable teacher provides action advice to help the student. This work considers how to better leverage uncertainties about when a student should ask for advice and if the student can model the teacher to ask for less advice. The student could decide to ask for advice when it is uncertain or when both it and its model of the teacher are uncertain. In addition to this investigation, this paper introduces a new method to compute uncertainty for a deep RL agent using a secondary neural network. Our empirical results show that using dual uncertainties to drive advice collection and reuse may improve learning performance across several Atari games.
This manuscript portrays optimization as a process. In many practical applications the environment is so complex that it is infeasible to lay out a comprehensive theoretical model and use classical algorithmic theory and mathematical optimization. It is necessary as well as beneficial to take a robust approach, by applying an optimization method that learns as one goes along, learning from experience as more aspects of the problem are observed. This view of optimization as a process has become prominent in varied fields and has led to some spectacular success in modeling and systems that are now part of our daily lives.