亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Code refactoring is widely recognized as an essential software engineering practice to improve the understandability and maintainability of the source code. The Extract Method refactoring is considered as "Swiss army knife" of refactorings, as developers often apply it to improve their code quality. In recent years, several studies attempted to recommend Extract Method refactorings allowing the collection, analysis, and revelation of actionable data-driven insights about refactoring practices within software projects. In this paper, we aim at reviewing the current body of knowledge on existing Extract Method refactoring research and explore their limitations and potential improvement opportunities for future research efforts. Hence, researchers and practitioners begin to be aware of the state-of-the-art and identify new research opportunities in this context. We review the body of knowledge related to Extract Method refactoring in the form of a systematic literature review (SLR). After compiling an initial pool of 1,367 papers, we conducted a systematic selection and our final pool included 83 primary studies. We define three sets of research questions and systematically develop and refine a classification schema based on several criteria including their methodology, applicability, and degree of automation. The results construct a catalog of 83 Extract Method approaches indicating that several techniques have been proposed in the literature. Our results show that: (i) 38.6% of Extract Method refactoring studies primarily focus on addressing code clones; (ii) Several of the Extract Method tools incorporate the developer's involvement in the decision-making process when applying the method extraction, and (iii) the existing benchmarks are heterogeneous and do not contain the same type of information, making standardizing them for the purpose of benchmarking difficult.

相關內容

通過學習、實踐或探索所獲得的認識、判斷或技能。

Misclassification detection is an important problem in machine learning, as it allows for the identification of instances where the model's predictions are unreliable. However, conventional uncertainty measures such as Shannon entropy do not provide an effective way to infer the real uncertainty associated with the model's predictions. In this paper, we introduce a novel data-driven measure of uncertainty relative to an observer for misclassification detection. By learning patterns in the distribution of soft-predictions, our uncertainty measure can identify misclassified samples based on the predicted class probabilities. Interestingly, according to the proposed measure, soft-predictions corresponding to misclassified instances can carry a large amount of uncertainty, even though they may have low Shannon entropy. We demonstrate empirical improvements over multiple image classification tasks, outperforming state-of-the-art misclassification detection methods.

Applied recommender systems research is in a curious position. While there is a very rigorous protocol for measuring performance by A/B testing, best practice for finding a `B' to test does not explicitly target performance but rather targets a proxy measure. The success or failure of a given A/B test then depends entirely on if the proposed proxy is better correlated to performance than the previous proxy. No principle exists to identify if one proxy is better than another offline, leaving the practitioners shooting in the dark. The purpose of this position paper is to question this anti-Utopian thinking and argue that a non-standard use of the deep learning stacks actually has the potential to unlock reward optimizing recommendation.

Advanced image fusion methods are devoted to generating the fusion results by aggregating the complementary information conveyed by the source images. However, the difference in the source-specific manifestation of the imaged scene content makes it difficult to design a robust and controllable fusion process. We argue that this issue can be alleviated with the help of higher-level semantics, conveyed by the text modality, which should enable us to generate fused images for different purposes, such as visualisation and downstream tasks, in a controllable way. This is achieved by exploiting a vision-and-language model to build a coarse-to-fine association mechanism between the text and image signals. With the guidance of the association maps, an affine fusion unit is embedded in the transformer network to fuse the text and vision modalities at the feature level. As another ingredient of this work, we propose the use of textual attention to adapt image quality assessment to the fusion task. To facilitate the implementation of the proposed text-guided fusion paradigm, and its adoption by the wider research community, we release a text-annotated image fusion dataset IVT. Extensive experiments demonstrate that our approach (TextFusion) consistently outperforms traditional appearance-based fusion methods. Our code and dataset will be publicly available at //github.com/AWCXV/TextFusion.

[Context] Applying design principles has long been acknowledged as beneficial for understanding and maintainability in traditional software projects. These benefits may similarly hold for Machine Learning (ML) projects, which involve iterative experimentation with data, models, and algorithms. However, ML components are often developed by data scientists with diverse educational backgrounds, potentially resulting in code that doesn't adhere to software design best practices. [Goal] In order to better understand this phenomenon, we investigated the impact of the SOLID design principles on ML code understanding. [Method] We conducted a controlled experiment with three independent trials involving 100 data scientists. We restructured real industrial ML code that did not use SOLID principles. Within each trial, one group was presented with the original ML code, while the other was presented with ML code incorporating SOLID principles. Participants of both groups were asked to analyze the code and fill out a questionnaire that included both open-ended and closed-ended questions on their understanding. [Results] The study results provide statistically significant evidence that the adoption of the SOLID design principles can improve code understanding within the realm of ML projects. [Conclusion] We put forward that software engineering design principles should be spread within the data science community and considered for enhancing the maintainability of ML code.

One of the challenges in robotics is to enable robotic units with the reasoning capability that would be robust enough to execute complex tasks in dynamic environments. Recent advances in LLMs have positioned them as go-to tools for simple reasoning tasks, motivating the pioneering work of Liang et al. [35] that uses an LLM to translate natural language commands into low-level static execution plans for robotic units. Using LLMs inside robotics systems brings their generalization to a new level, enabling zero-shot generalization to new tasks. This paper extends this prior work to dynamic environments. We propose InCoRo, a system that uses a classical robotic feedback loop composed of an LLM controller, a scene understanding unit, and a robot. Our system continuously analyzes the state of the environment and provides adapted execution commands, enabling the robot to adjust to changing environmental conditions and correcting for controller errors. Our system does not require any iterative optimization to learn to accomplish a task as it leverages in-context learning with an off-the-shelf LLM model. Through an extensive validation process involving two standardized industrial robotic units -- SCARA and DELTA types -- we contribute knowledge about these robots, not popular in the community, thereby enriching it. We highlight the generalization capabilities of our system and show that (1) in-context learning in combination with the current state-of-the-art LLMs is an effective way to implement a robotic controller; (2) in static environments, InCoRo surpasses the prior art in terms of the success rate; (3) in dynamic environments, we establish new state-of-the-art for the SCARA and DELTA units, respectively. This research paves the way towards building reliable, efficient, intelligent autonomous systems that adapt to dynamic environments.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

Visual information extraction (VIE) has attracted considerable attention recently owing to its various advanced applications such as document understanding, automatic marking and intelligent education. Most existing works decoupled this problem into several independent sub-tasks of text spotting (text detection and recognition) and information extraction, which completely ignored the high correlation among them during optimization. In this paper, we propose a robust visual information extraction system (VIES) towards real-world scenarios, which is a unified end-to-end trainable framework for simultaneous text detection, recognition and information extraction by taking a single document image as input and outputting the structured information. Specifically, the information extraction branch collects abundant visual and semantic representations from text spotting for multimodal feature fusion and conversely, provides higher-level semantic clues to contribute to the optimization of text spotting. Moreover, regarding the shortage of public benchmarks, we construct a fully-annotated dataset called EPHOIE (//github.com/HCIILAB/EPHOIE), which is the first Chinese benchmark for both text spotting and visual information extraction. EPHOIE consists of 1,494 images of examination paper head with complex layouts and background, including a total of 15,771 Chinese handwritten or printed text instances. Compared with the state-of-the-art methods, our VIES shows significant superior performance on the EPHOIE dataset and achieves a 9.01% F-score gain on the widely used SROIE dataset under the end-to-end scenario.

For deploying a deep learning model into production, it needs to be both accurate and compact to meet the latency and memory constraints. This usually results in a network that is deep (to ensure performance) and yet thin (to improve computational efficiency). In this paper, we propose an efficient method to train a deep thin network with a theoretic guarantee. Our method is motivated by model compression. It consists of three stages. In the first stage, we sufficiently widen the deep thin network and train it until convergence. In the second stage, we use this well-trained deep wide network to warm up (or initialize) the original deep thin network. This is achieved by letting the thin network imitate the immediate outputs of the wide network from layer to layer. In the last stage, we further fine tune this well initialized deep thin network. The theoretical guarantee is established by using mean field analysis, which shows the advantage of layerwise imitation over traditional training deep thin networks from scratch by backpropagation. We also conduct large-scale empirical experiments to validate our approach. By training with our method, ResNet50 can outperform ResNet101, and BERT_BASE can be comparable with BERT_LARGE, where both the latter models are trained via the standard training procedures as in the literature.

Since hardware resources are limited, the objective of training deep learning models is typically to maximize accuracy subject to the time and memory constraints of training and inference. We study the impact of model size in this setting, focusing on Transformer models for NLP tasks that are limited by compute: self-supervised pretraining and high-resource machine translation. We first show that even though smaller Transformer models execute faster per iteration, wider and deeper models converge in significantly fewer steps. Moreover, this acceleration in convergence typically outpaces the additional computational overhead of using larger models. Therefore, the most compute-efficient training strategy is to counterintuitively train extremely large models but stop after a small number of iterations. This leads to an apparent trade-off between the training efficiency of large Transformer models and the inference efficiency of small Transformer models. However, we show that large models are more robust to compression techniques such as quantization and pruning than small models. Consequently, one can get the best of both worlds: heavily compressed, large models achieve higher accuracy than lightly compressed, small models.

北京阿比特科技有限公司