StreamBed is a capacity planning system for stream processing. It predicts, ahead of any production deployment, the resources that a query will require to process an incoming data rate sustainably, and the appropriate configuration of these resources. StreamBed builds a capacity planning model by piloting a series of runs of the target query in a small-scale, controlled testbed. We implement StreamBed for the popular Flink DSP engine. Our evaluation with large-scale queries of the Nexmark benchmark demonstrates that StreamBed can effectively and accurately predict capacity requirements for jobs spanning more than 1,000 cores using a testbed of only 48 cores.
The optimization of open-loop shallow geothermal systems, which includes both design and operational aspects, is an important research area aimed at improving their efficiency and sustainability and the effective management of groundwater as a shallow geothermal resource. This paper investigates various approaches to address optimization problems arising from these research and implementation questions about GWHP systems. The identified optimization approaches are thoroughly analyzed based on criteria such as computational cost and applicability. Moreover, a novel classification scheme is introduced that categorizes the approaches according to the types of groundwater simulation model and the optimization algorithm used. Simulation models are divided into two types: numerical and simplified (analytical or data-driven) models, while optimization algorithms are divided into gradient-based and derivative-free algorithms. Finally, a comprehensive review of existing approaches in the literature is provided, highlighting their strengths and limitations and offering recommendations for both the use of existing approaches and the development of new, improved ones in this field.
Accelerated life-tests (ALTs) are applied for inferring lifetime characteristics of highly reliable products. In particular, step-stress ALTs increase the stress level at which units under test are subject at certain pre-fixed times, thus accelerating product wear and inducing its failure. In some cases, due to cost or product nature constraints, continuous monitoring of devices is infeasible but the units are inspected for failures at particular inspection time points. In such setups, the ALT response is interval-censored. Furthermore, when a test unit fails, there are often more than one fatal cause for the failure, known as competing risks. In this paper, we assume that all competing risks are independent and follow an exponential distribution with scale parameter depending on the stress level. Under this setup, we present a family of robust estimators based on the density power divergence, including the classical maximum likelihood estimator as a particular case. We derive asymptotic and robustness properties of the MDPDE, showing its consistency for large samples. Based on these MDPDEs, estimates of the lifetime characteristics of the product as well as estimates of cause-specific lifetime characteristics have been developed. Direct, transformed and bootstrap confidence intervals for the mean lifetime to failure, reliability at a mission time, and distribution quantiles are proposed, and their performance is empirically compared through simulations. Besides, the performance of the MDPDE family has been examined through an extensive numerical study and the methods of inference discussed here are illustrated with a real-data example regarding electronic devices.
An explosion of work in language is leading to ever-increasing numbers of available natural language processing models, with little understanding of how new models compare to better-understood models. One major reason for this difficulty is saturating benchmark datasets, which may not reflect well differences in model performance in the wild. In this work, we propose a novel framework for comparing two natural language processing models by revealing their shared invariance to interpretable input perturbations that are designed to target a specific linguistic capability (e.g., Synonym-Invariance, Typo-Invariance). Via experiments on models from within the same and across different architecture families, this framework offers a number of insights about how changes in models (e.g., distillation, increase in size, amount of pre-training) affect multiple well-defined linguistic capabilities. Furthermore, we also demonstrate how our framework can enable evaluation of the invariances shared between models that are available as commercial black-box APIs (e.g., InstructGPT family) and models that are relatively better understood (e.g., GPT-2). Across several experiments, we observe that large language models share many of the invariances encoded by models of various sizes, whereas the invariances encoded by large language models are only shared by other large models. Possessing a wide variety of invariances may be a key reason for the recent successes of large language models, and our framework can shed light on the types of invariances that are retained by or emerge in new models.
Permutation tests enable testing statistical hypotheses in situations when the distribution of the test statistic is complicated or not available. In some situations, the test statistic under investigation is multivariate, with the multiple testing problem being an important example. The corresponding multivariate permutation tests are then typically based on a suitableone-dimensional transformation of the vector of partial permutation p-values via so called combining functions. This paper proposes a new approach that utilizes the optimal measure transportation concept. The final single p-value is computed from the empirical center-outward distribution function of the permuted multivariate test statistics. This method avoids computation of the partial p-values and it is easy to be implemented. In addition, it allows to compute and interpret contributions of the components of the multivariate test statistic to the non-conformity score and to the rejection of the null hypothesis. Apart from this method, the measure transportation is applied also to the vector of partial p-values as an alternative to the classical combining functions. Both techniques are compared with the standard approaches using various practical examples in a Monte Carlo study. An application on a functional data set is provided as well.
The investigation of mixture models is a key to understand and visualize the distribution of multivariate data. Most mixture models approaches are based on likelihoods, and are not adapted to distribution with finite support or without a well-defined density function. This study proposes the Augmented Quantization method, which is a reformulation of the classical quantization problem but which uses the p-Wasserstein distance. This metric can be computed in very general distribution spaces, in particular with varying supports. The clustering interpretation of quantization is revisited in a more general framework. The performance of Augmented Quantization is first demonstrated through analytical toy problems. Subsequently, it is applied to a practical case study involving river flooding, wherein mixtures of Dirac and Uniform distributions are built in the input space, enabling the identification of the most influential variables.
Crowd simulations play a pivotal role in building design, influencing both user experience and public safety. While traditional knowledge-driven models have their merits, data-driven crowd simulation models promise to bring a new dimension of realism to these simulations. However, most of the existing data-driven models are designed for specific geometries, leading to poor adaptability and applicability. A promising strategy for enhancing the adaptability and realism of data-driven crowd simulation models is to incorporate visual information, including the scenario geometry and pedestrian locomotion. Consequently, this paper proposes a novel visual-information-driven (VID) crowd simulation model. The VID model predicts the pedestrian velocity at the next time step based on the prior social-visual information and motion data of an individual. A radar-geometry-locomotion method is established to extract the visual information of pedestrians. Moreover, a temporal convolutional network (TCN)-based deep learning model, named social-visual TCN, is developed for velocity prediction. The VID model is tested on three public pedestrian motion datasets with distinct geometries, i.e., corridor, corner, and T-junction. Both qualitative and quantitative metrics are employed to evaluate the VID model, and the results highlight the improved adaptability of the model across all three geometric scenarios. Overall, the proposed method demonstrates effectiveness in enhancing the adaptability of data-driven crowd models.
The Gaussian mixed-effects model driven by a stationary integrated Ornstein-Uhlenbeck process has been used for analyzing longitudinal data having an explicit and simple serial-correlation structure in each individual. However, the theoretical aspect of its asymptotic inference is yet to be elucidated. We prove the local asymptotics for the associated log-likelihood function, which in particular guarantees the asymptotic optimality of the suitably chosen maximum-likelihood estimator. We illustrate the obtained asymptotic normality result through some simulations for both balanced and unbalanced datasets.
This paper introduces an extended tensor decomposition (XTD) method for model reduction. The proposed method is based on a sparse non-separated enrichment to the conventional tensor decomposition, which is expected to improve the approximation accuracy and the reducibility (compressibility) in highly nonlinear and singular cases. The proposed XTD method can be a powerful tool for solving nonlinear space-time parametric problems. The method has been successfully applied to parametric elastic-plastic problems and real time additive manufacturing residual stress predictions with uncertainty quantification. Furthermore, a combined XTD-SCA (self-consistent clustering analysis) strategy has been presented for multi-scale material modeling, which enables real time multi-scale multi-parametric simulations. The efficiency of the method is demonstrated with comparison to finite element analysis. The proposed method enables a novel framework for fast manufacturing and material design with uncertainties.
In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.
We present ResMLP, an architecture built entirely upon multi-layer perceptrons for image classification. It is a simple residual network that alternates (i) a linear layer in which image patches interact, independently and identically across channels, and (ii) a two-layer feed-forward network in which channels interact independently per patch. When trained with a modern training strategy using heavy data-augmentation and optionally distillation, it attains surprisingly good accuracy/complexity trade-offs on ImageNet. We will share our code based on the Timm library and pre-trained models.