亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

To study the overall connectivity in device-to-device networks in cities, we incorporate a signal-to-interference-plus-noise connectivity model into a Poisson-Voronoi tessellation model representing the streets of a city. Relays are located at crossroads (or street intersections), whereas (user) devices are scattered along streets. Between any two adjacent relays, we assume data can be transmitted either directly between the relays or through users, given they share a common street. Our simulation results reveal that the network connectivity is ensured when the density of users (on the streets) exceeds a certain critical value. But then the network connectivity disappears when the user density exceeds a second critical value. The intuition is that for longer streets, where direct relay-to-relay communication is not possible, users are needed to transmit data between relays, but with too many users the interference becomes too strong, eventually reducing the overall network connectivity. This observation on the user density evokes previous results based on another wireless network model, where transmitter-receivers were scattered across the plane. This effect disappears when interference is removed from the model, giving a variation of the classic Gilbert model and recalling the lesson that neglecting interference in such network models can give overly optimistic results. For physically reasonable model parameters, we show that crowded streets (with more than six users on a typical street) lead to a sudden drop in connectivity. We also give numerical results outlining a relationship between the user density and the strength of any interference reduction techniques.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

In this paper, we study multimodal coreference resolution, specifically where a longer descriptive text, i.e., a narration is paired with an image. This poses significant challenges due to fine-grained image-text alignment, inherent ambiguity present in narrative language, and unavailability of large annotated training sets. To tackle these challenges, we present a data efficient semi-supervised approach that utilizes image-narration pairs to resolve coreferences and narrative grounding in a multimodal context. Our approach incorporates losses for both labeled and unlabeled data within a cross-modal framework. Our evaluation shows that the proposed approach outperforms strong baselines both quantitatively and qualitatively, for the tasks of coreference resolution and narrative grounding.

Spiking neural network is a kind of neuromorphic computing that is believed to improve the level of intelligence and provide advantages for quantum computing. In this work, we address this issue by designing an optical spiking neural network and find that it can be used to accelerate the speed of computation, especially on combinatorial optimization problems. Here the spiking neural network is constructed by the antisymmetrically coupled degenerate optical parametric oscillator pulses and dissipative pulses. A nonlinear transfer function is chosen to mitigate amplitude inhomogeneities and destabilize the resulting local minima according to the dynamical behavior of spiking neurons. It is numerically shown that the spiking neural network-coherent Ising machines have excellent performance on combinatorial optimization problems, which is expected to offer new applications for neural computing and optical computing.

Physics-informed neural networks have emerged as a coherent framework for building predictive models that combine statistical patterns with domain knowledge. The underlying notion is to enrich the optimization loss function with known relationships to constrain the space of possible solutions. Hydrodynamic simulations are a core constituent of modern cosmology, while the required computations are both expensive and time-consuming. At the same time, the comparatively fast simulation of dark matter requires fewer resources, which has led to the emergence of machine learning algorithms for baryon inpainting as an active area of research; here, recreating the scatter found in hydrodynamic simulations is an ongoing challenge. This paper presents the first application of physics-informed neural networks to baryon inpainting by combining advances in neural network architectures with physical constraints, injecting theory on baryon conversion efficiency into the model loss function. We also introduce a punitive prediction comparison based on the Kullback-Leibler divergence, which enforces scatter reproduction. By simultaneously extracting the complete set of baryonic properties for the Simba suite of cosmological simulations, our results demonstrate improved accuracy of baryonic predictions based on dark matter halo properties, successful recovery of the fundamental metallicity relation, and retrieve scatter that traces the target simulation's distribution.

Existing works have made great progress in improving adversarial robustness, but typically test their method only on data from the same distribution as the training data, i.e. in-distribution (ID) testing. As a result, it is unclear how such robustness generalizes under input distribution shifts, i.e. out-of-distribution (OOD) testing. This is a concerning omission as such distribution shifts are unavoidable when methods are deployed in the wild. To address this issue we propose a benchmark named OODRobustBench to comprehensively assess OOD adversarial robustness using 23 dataset-wise shifts (i.e. naturalistic shifts in input distribution) and 6 threat-wise shifts (i.e., unforeseen adversarial threat models). OODRobustBench is used to assess 706 robust models using 60.7K adversarial evaluations. This large-scale analysis shows that: 1) adversarial robustness suffers from a severe OOD generalization issue; 2) ID robustness correlates strongly with OOD robustness, in a positive linear way, under many distribution shifts. The latter enables the prediction of OOD robustness from ID robustness. Based on this, we are able to predict the upper limit of OOD robustness for existing robust training schemes. The results suggest that achieving OOD robustness requires designing novel methods beyond the conventional ones. Last, we discover that extra data, data augmentation, advanced model architectures and particular regularization approaches can improve OOD robustness. Noticeably, the discovered training schemes, compared to the baseline, exhibit dramatically higher robustness under threat shift while keeping high ID robustness, demonstrating new promising solutions for robustness against both multi-attack and unforeseen attacks.

In this paper the interpolating rational functions introduced by Floater and Hormann are generalized leading to a whole new family of rational functions depending on $\gamma$, an additional positive integer parameter. For $\gamma = 1$, the original Floater--Hormann interpolants are obtained. When $\gamma>1$ we prove that the new rational functions share a lot of the nice properties of the original Floater--Hormann functions. Indeed, for any configuration of nodes in a compact interval, they have no real poles, interpolate the given data, preserve the polynomials up to a certain fixed degree, and have a barycentric-type representation. Moreover, we estimate the associated Lebesgue constants in terms of the minimum ($h^*$) and maximum ($h$) distance between two consecutive nodes. It turns out that, in contrast to the original Floater-Hormann interpolants, for all $\gamma > 1$ we get uniformly bounded Lebesgue constants in the case of equidistant and quasi-equidistant nodes configurations (i.e., when $h\sim h^*$). For such configurations, as the number of nodes tends to infinity, we prove that the new interpolants ($\gamma>1$) uniformly converge to the interpolated function $f$, for any continuous function $f$ and all $\gamma>1$. The same is not ensured by the original FH interpolants ($\gamma=1$). Moreover, we provide uniform and pointwise estimates of the approximation error for functions having different degrees of smoothness. Numerical experiments illustrate the theoretical results and show a better error profile for less smooth functions compared to the original Floater-Hormann interpolants.

For augmentation of the square-shaped image data of a convolutional neural network (CNN), we introduce a new method, in which the original images are mapped onto a disk with a conformal mapping, rotated around the center of this disk and mapped under such a M\"obius transformation that preserves the disk, and then mapped back onto their original square shape. This process does not result the loss of information caused by removing areas from near the edges of the original images unlike the typical transformations used in the data augmentation for a CNN. We offer here the formulas of all the mappings needed together with detailed instructions how to write a code for transforming the images. The new method is also tested with simulated data and, according the results, using this method to augment the training data of 10 images into 40 images decreases the amount of the error in the predictions by a CNN for a test set of 160 images in a statistically significant way (p-value=0.0360).

Although there is extensive literature on the application of artificial neural networks (NNs) in quality control (QC), to monitor the conformity of a process to quality specifications, at least five QC measurements are required, increasing the related cost. To explore the application of neural networks to samples of QC measurements of very small size, four one-dimensional (1-D) convolutional neural networks (CNNs) were designed, trained, and tested with datasets of $ n $-tuples of simulated standardized normally distributed QC measurements, for $ 1 \leq n \leq 4$. The designed neural networks were compared to statistical QC functions with equal probabilities for false rejection, applied to samples of the same size. When the $ n $-tuples included at least two QC measurements distributed as $ \mathcal{N}(\mu, \sigma^2) $, where $ 0.2 < |\mu| \leq 6.0 $, and $ 1.0 < \sigma \leq 7.0 $, the designed neural networks outperformed the respective statistical QC functions. Therefore, 1-D CNNs applied to samples of 2-4 quality control measurements can be used to increase the probability of detection of the nonconformity of a process to the quality specifications, with lower cost.

Currently the state of the art network models are based or depend on Discrete Event Simulation (DES). While DES is highly accurate, it is also computationally costly and cumbersome to parallelize, making it unpractical to simulate high performance networks. Additionally, simulated scenarios fail to capture all of the complexities present in real network scenarios. While there exists network models based on Machine Learning (ML) techniques to minimize these issues, these models are also trained with simulated data and hence vulnerable to the same pitfalls. Consequently, the Graph Neural Networking Challenge 2023 introduces a dataset of captured traffic traces that can be used to build a ML-based network model without these limitations. In this paper we propose a Graph Neural Network (GNN)-based solution specifically designed to better capture the complexities of real network scenarios. This is done through a novel encoding method to capture information from the sequence of captured packets, and an improved message passing algorithm to better represent the dependencies present in physical networks. We show that the proposed solution it is able to learn and generalize to unseen captured network scenarios.

Nonignorable missing outcomes are common in real world datasets and often require strong parametric assumptions to achieve identification. These assumptions can be implausible or untestable, and so we may forgo them in favour of partially identified models that narrow the set of a priori possible values to an identification region. Here we propose a new nonparametric Bayes method that allows for the incorporation of multiple clinically relevant restrictions of the parameter space simultaneously. We focus on two common restrictions, instrumental variables and the direction of missing data bias, and investigate how these restrictions narrow the identification region for parameters of interest. Additionally, we propose a rejection sampling algorithm that allows us to quantify the evidence for these assumptions in the data. We compare our method to a standard Heckman selection model in both simulation studies and in an applied problem examining the effectiveness of cash-transfers for people experiencing homelessness.

Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.

北京阿比特科技有限公司