亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Hash-based Proof-of-Work (PoW) used in the Bitcoin Blockchain leads to high energy consumption and resource wastage. In this paper, we aim to re-purpose the energy by replacing the hash function with real-life problems having commercial utility. We propose Chrisimos, a useful Proof-of-Work where miners are required to find a minimal dominating set for real-life graph instances. A miner who is able to output the smallest dominating set for the given graph within the block interval time wins the mining game. We also propose a new chain selection rule that ensures the security of the scheme. Thus our protocol also realizes a decentralized minimal dominating set solver for any graph instance. We provide formal proof of correctness and show via experimental results that the block interval time is within feasible bounds of hash-based PoW.

相關內容

The recent surge of interest surrounding Multimodal Neural Networks (MM-NN) is attributed to their ability to effectively process and integrate multiscale information from diverse data sources. MM-NNs extract and fuse features from multiple modalities using adequate unimodal backbones and specific fusion networks. Although this helps strengthen the multimodal information representation, designing such networks is labor-intensive. It requires tuning the architectural parameters of the unimodal backbones, choosing the fusing point, and selecting the operations for fusion. Furthermore, multimodality AI is emerging as a cutting-edge option in Internet of Things (IoT) systems where inference latency and energy consumption are critical metrics in addition to accuracy. In this paper, we propose Harmonic-NAS, a framework for the joint optimization of unimodal backbones and multimodal fusion networks with hardware awareness on resource-constrained devices. Harmonic-NAS involves a two-tier optimization approach for the unimodal backbone architectures and fusion strategy and operators. By incorporating the hardware dimension into the optimization, evaluation results on various devices and multimodal datasets have demonstrated the superiority of Harmonic-NAS over state-of-the-art approaches achieving up to 10.9% accuracy improvement, 1.91x latency reduction, and 2.14x energy efficiency gain.

QUIC is a new protocol standardized in 2021 designed to improve on the widely used TCP / TLS stack. The main goal is to speed up web traffic via HTTP, but it is also used in other areas like tunneling. Based on UDP it offers features like reliable in-order delivery, flow and congestion control, streambased multiplexing, and always-on encryption using TLS 1.3. Other than with TCP, QUIC implements all these features in user space, only requiring kernel interaction for UDP. While running in user space provides more flexibility, it profits less from efficiency and optimization within the kernel. Multiple implementations exist, differing in programming language, architecture, and design choices. This paper presents an extension to the QUIC Interop Runner, a framework for testing interoperability of QUIC implementations. Our contribution enables reproducible QUIC benchmarks on dedicated hardware. We provide baseline results on 10G links, including multiple implementations, evaluate how OS features like buffer sizes and NIC offloading impact QUIC performance, and show which data rates can be achieved with QUIC compared to TCP. Our results show that QUIC performance varies widely between client and server implementations from 90 Mbit/s to 4900 Mbit/s. We show that the OS generally sets the default buffer size too small, which should be increased by at least an order of magnitude based on our findings. Furthermore, QUIC benefits less from NIC offloading and AES NI hardware acceleration while both features improve the goodput of TCP to around 8000 Mbit/s. Our framework can be applied to evaluate the effects of future improvements to the protocol or the OS.

The IceCube Neutrino Observatory is a cubic-kilometer high-energy neutrino detector deployed in the Antarctic ice. Two major event classes are charged-current electron and muon neutrino interactions. In this contribution, we discuss the inference of direction and energy for these classes using conditional normalizing flows. They allow to derive a posterior distribution for each individual event based on the raw data that can include systematic uncertainties, which makes them very promising for next-generation reconstructions. For each normalizing flow we use the differential entropy and the KL-divergence to its maximum entropy approximation to interpret the results. The normalizing flows correctly incorporate complex optical properties of the Antarctic ice and their relation to the embedded detector. For showers, the differential entropy increases in regions of high photon absorption and decreases in clear ice. For muons, the differential entropy strongly correlates with the contained track length. Coverage is maintained, even for low photon counts and highly asymmetrical contour shapes. For high-photon counts, the distributions get narrower and become more symmetrical, as expected from the asymptotic theorem of Bernstein-von-Mises. For shower directional reconstruction, we find the region between 1 TeV and 100 TeV to potentially benefit the most from normalizing flows because of azimuth-zenith asymmetries which have been neglected in previous analyses by assuming symmetrical contours. Events in this energy range play a vital role in the recent discovery of the galactic plane diffuse neutrino emission.

In this short piece, I delved into the connections of Nobel laureates by applying Network Science methods to and public data collected from Wikipedia. I uncovered the existence of a central "giant component" in the Nobel laureate network, highlighting the core-periphery structure and the disparity in visibility among laureates. I explored the dominance of laureates in the fields of science and humanities, revealing a polarization that contradicts the trend of interdisciplinary research. Furthermore, it the finding sheds light on the underrepresentation of female laureates in certain Nobel Prize categories.

The possibility of automatically classifying high frequency sub-bottom acoustic reflections collected from an Autonomous Underwater Robot is investigated in this paper. In field surveys of Cobalt-rich Manganese Crusts (Mn-crusts), existing methods relies on visual confirmation of seafloor from images and thickness measurements using the sub-bottom probe. Using these visual classification results as ground truth, an autoencoder is trained to extract latent features from bundled acoustic reflections. A Support Vector Machine classifier is then trained to classify the latent space to idetify seafloor classes. Results from data collected from seafloor at 1500m deep regions of Mn-crust showed an accuracy of about 70%.

Trusted Execution Environments (TEEs) embedded in IoT devices provide a deployable solution to secure IoT applications at the hardware level. By design, in TEEs, the Trusted Operating System (Trusted OS) is the primary component. It enables the TEE to use security-based design techniques, such as data encryption and identity authentication. Once a Trusted OS has been exploited, the TEE can no longer ensure security. However, Trusted OSes for IoT devices have received little security analysis, which is challenging from several perspectives: (1) Trusted OSes are closed-source and have an unfavorable environment for sending test cases and collecting feedback. (2) Trusted OSes have complex data structures and require a stateful workflow, which limits existing vulnerability detection tools. To address the challenges, we present SyzTrust, the first state-aware fuzzing framework for vetting the security of resource-limited Trusted OSes. SyzTrust adopts a hardware-assisted framework to enable fuzzing Trusted OSes directly on IoT devices as well as tracking state and code coverage non-invasively. SyzTrust utilizes composite feedback to guide the fuzzer to effectively explore more states as well as to increase the code coverage. We evaluate SyzTrust on Trusted OSes from three major vendors: Samsung, Tsinglink Cloud, and Ali Cloud. These systems run on Cortex M23/33 MCUs, which provide the necessary abstraction for embedded TEEs. We discovered 70 previously unknown vulnerabilities in their Trusted OSes, receiving 10 new CVEs so far. Furthermore, compared to the baseline, SyzTrust has demonstrated significant improvements, including 66% higher code coverage, 651% higher state coverage, and 31% improved vulnerability-finding capability. We report all discovered new vulnerabilities to vendors and open source SyzTrust.

Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.

Seeking the equivalent entities among multi-source Knowledge Graphs (KGs) is the pivotal step to KGs integration, also known as \emph{entity alignment} (EA). However, most existing EA methods are inefficient and poor in scalability. A recent summary points out that some of them even require several days to deal with a dataset containing 200,000 nodes (DWY100K). We believe over-complex graph encoder and inefficient negative sampling strategy are the two main reasons. In this paper, we propose a novel KG encoder -- Dual Attention Matching Network (Dual-AMN), which not only models both intra-graph and cross-graph information smartly, but also greatly reduces computational complexity. Furthermore, we propose the Normalized Hard Sample Mining Loss to smoothly select hard negative samples with reduced loss shift. The experimental results on widely used public datasets indicate that our method achieves both high accuracy and high efficiency. On DWY100K, the whole running process of our method could be finished in 1,100 seconds, at least 10* faster than previous work. The performances of our method also outperform previous works across all datasets, where Hits@1 and MRR have been improved from 6% to 13%.

Graph Convolution Networks (GCNs) manifest great potential in recommendation. This is attributed to their capability on learning good user and item embeddings by exploiting the collaborative signals from the high-order neighbors. Like other GCN models, the GCN based recommendation models also suffer from the notorious over-smoothing problem - when stacking more layers, node embeddings become more similar and eventually indistinguishable, resulted in performance degradation. The recently proposed LightGCN and LR-GCN alleviate this problem to some extent, however, we argue that they overlook an important factor for the over-smoothing problem in recommendation, that is, high-order neighboring users with no common interests of a user can be also involved in the user's embedding learning in the graph convolution operation. As a result, the multi-layer graph convolution will make users with dissimilar interests have similar embeddings. In this paper, we propose a novel Interest-aware Message-Passing GCN (IMP-GCN) recommendation model, which performs high-order graph convolution inside subgraphs. The subgraph consists of users with similar interests and their interacted items. To form the subgraphs, we design an unsupervised subgraph generation module, which can effectively identify users with common interests by exploiting both user feature and graph structure. To this end, our model can avoid propagating negative information from high-order neighbors into embedding learning. Experimental results on three large-scale benchmark datasets show that our model can gain performance improvement by stacking more layers and outperform the state-of-the-art GCN-based recommendation models significantly.

Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.

北京阿比特科技有限公司