亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

AutoDRIVE is envisioned to be an integrated research and education platform for scaled autonomous vehicles and related applications. This work is a stepping-stone towards achieving the greater goal of realizing such a platform. Particularly, this work introduces the AutoDRIVE Simulator, a high-fidelity simulator for scaled autonomous vehicles. The proposed simulation ecosystem is developed atop the Unity game engine, and exploits its features in order to simulate realistic system dynamics and render photorealistic graphics. It comprises of a scaled vehicle model equipped with a comprehensive sensor suite for redundant perception, a set of actuators for constrained motion control and a fully functional lighting system for illumination and signaling. It also provides a modular environment development kit, which comprises of various environment modules that aid in reconfigurable construction of the scene. Additionally, the simulator features a communication bridge in order to extend an interface to the autonomous driving software stack developed independently by the users. This work describes some of the prominent components of this simulation system along with some key features that it has to offer in order to accelerate education and research aimed at autonomous driving.

相關內容

Securing safe-driving for connected and autonomous vehicles (CAVs) continues to be a widespread concern despite various sophisticated functions delivered by artificial intelligence for in-vehicle devices. Besides, diverse malicious network attacks become ubiquitous along with the worldwide implementation of the Internet of Vehicles, which exposes a range of reliability and privacy threats for managing data in CAV networks. Combined with the fact that the capability of existing CAVs in handling intensive computation tasks is limited, this implies a need for designing an efficient assessment system to guarantee autonomous driving safety without compromising data security. Motivated by this, in this article, we propose a novel framework, namely Blockchain-enabled intElligent Safe-driving assessmenT (BEST), that offers a smart and reliable approach for conducting safe driving supervision while protecting vehicular information. Specifically, a promising solution that exploits a long short-term memory model is introduced to assess the safety level of the moving CAVs. Then, we investigate how a distributed blockchain obtains adequate trustworthiness and robustness for CAV data by adopting a byzantine fault tolerance-based delegated proof-of-stake consensus mechanism. Simulation results demonstrate that our presented BEST gains better data credibility with a higher prediction accuracy for vehicular safety assessment when compared with existing schemes. Finally, we discuss several open challenges that need to be addressed in future CAV networks.

While the digitization of power distribution grids brings many benefits, it also introduces new vulnerabilities for cyber-attacks. To maintain secure operations in the emerging threat landscape, detecting and implementing countermeasures against cyber-attacks are paramount. However, due to the lack of publicly available attack data against Smart Grids (SGs) for countermeasure development, simulation-based data generation approaches offer the potential to provide the needed data foundation. Therefore, our proposed approach provides flexible and scalable replication of multi-staged cyber-attacks in an SG Co-Simulation Environment (COSE). The COSE consists of an energy grid simulator, simulators for Operation Technology (OT) devices, and a network emulator for realistic IT process networks. Focusing on defensive and offensive use cases in COSE, our simulated attacker can perform network scans, find vulnerabilities, exploit them, gain administrative privileges, and execute malicious commands on OT devices. As an exemplary countermeasure, we present a built-in Intrusion Detection System (IDS) that analyzes generated network traffic using anomaly detection with Machine Learning (ML) approaches. In this work, we provide an overview of the SG COSE, present a multi-stage attack model with the potential to disrupt grid operations, and show exemplary performance evaluations of the IDS in specific scenarios.

Vehicles with driving automation are increasingly being developed for deployment across the world. However, the onboard sensing and perception capabilities of such automated or autonomous vehicles (AV) may not be sufficient to ensure safety under all scenarios and contexts. Infrastructure-augmented environment perception using roadside infrastructure sensors can be considered as an effective solution, at least for selected regions of interest such as urban road intersections or curved roads that present occlusions to the AV. However, they incur significant costs for procurement, installation and maintenance. Therefore these sensors must be placed strategically and optimally to yield maximum benefits in terms of the overall safety of road users. In this paper, we propose a novel methodology towards obtaining an optimal placement of V2X (Vehicle-to-everything) infrastructure sensors, which is particularly attractive to urban AV deployments, with various considerations including costs, coverage and redundancy. We combine the latest advances made in raycasting and linear optimization literature to deliver a tool for urban city planners, traffic analysis and AV deployment operators. Through experimental evaluation in representative environments, we prove the benefits and practicality of our approach.

The increasing complexity and unpredictability of many ICT scenarios let us envision that future systems will have to dynamically learn how to act and adapt to face evolving situations with little or no a priori knowledge, both at the level of individual components and at the collective level. In other words, such systems should become able to autonomously develop models of themselves and of their environment. Autonomous development includes: learning models of own capabilities; learning how to act purposefully towards the achievement of specific goals; and learning how to act collectively, i.e., accounting for the presence of others. In this paper, we introduce the vision of autonomous development in ICT systems, by framing its key concepts and by illustrating suitable application domains. Then, we overview the many research areas that are contributing or can potentially contribute to the realization of the vision, and identify some key research challenges.

ComOpT is an open-source research tool for coverage-driven testing of autonomous driving systems, focusing on planning and control. Starting with (i) a meta-model characterizing discrete conditions to be considered and (ii) constraints specifying the impossibility of certain combinations, ComOpT first generates constraint-feasible abstract scenarios while maximally increasing the coverage of k-way combinatorial testing. Each abstract scenario can be viewed as a conceptual equivalence class, which is then instantiated into multiple concrete scenarios by (1) randomly picking one local map that fulfills the specified geographical condition, and (2) assigning all actors accordingly with parameters within the range. Finally, ComOpT evaluates each concrete scenario against a set of KPIs and performs local scenario variation via spawning a new agent that might lead to a collision at designated points. We use ComOpT to test the Apollo~6 autonomous driving software stack. ComOpT can generate highly diversified scenarios with limited test budgets while uncovering problematic situations such as inabilities to make simple right turns, uncomfortable accelerations, and dangerous driving patterns. ComOpT participated in the 2021 IEEE AI Autonomous Vehicle Testing Challenge and won first place among more than 110 contending teams.

Robotic airships offer significant advantages in terms of safety, mobility, and extended flight times. However, their highly restrictive weight constraints pose a major challenge regarding the available computational power to perform the required control tasks. Spiking neural networks (SNNs) are a promising research direction for addressing this problem. By mimicking the biological process for transferring information between neurons using spikes or impulses, they allow for low power consumption and asynchronous event-driven processing. In this paper, we propose an evolved altitude controller based on a SNN for a robotic airship which relies solely on the sensory feedback provided by an airborne radar. Starting from the design of a lightweight, low-cost, open-source airship, we also present a SNN-based controller architecture, an evolutionary framework for training the network in a simulated environment, and a control scheme for ameliorating the gap with reality. The system's performance is evaluated through real-world experiments, demonstrating the advantages of our approach by comparing it with an artificial neural network and a linear controller. The results show an accurate tracking of the altitude command with an efficient control effort.

Motion planning under uncertainty is one of the main challenges in developing autonomous driving vehicles. In this work, we focus on the uncertainty in sensing and perception, resulted from a limited field of view, occlusions, and sensing range. This problem is often tackled by considering hypothetical hidden objects in occluded areas or beyond the sensing range to guarantee passive safety. However, this may result in conservative planning and expensive computation, particularly when numerous hypothetical objects need to be considered. We propose a reinforcement learning (RL) based solution to manage uncertainty by optimizing for the worst case outcome. This approach is in contrast to traditional RL, where the agents try to maximize the average expected reward. The proposed approach is built on top of the Distributional RL with its policy optimization maximizing the stochastic outcomes' lower bound. This modification can be applied to a range of RL algorithms. As a proof-of-concept, the approach is applied to two different RL algorithms, Soft Actor-Critic and DQN. The approach is evaluated against two challenging scenarios of pedestrians crossing with occlusion and curved roads with a limited field of view. The algorithm is trained and evaluated using the SUMO traffic simulator. The proposed approach yields much better motion planning behavior compared to conventional RL algorithms and behaves comparably to humans driving style.

Anahita is an autonomous underwater vehicle which is currently being developed by interdisciplinary team of students at Indian Institute of Technology(IIT) Kanpur with aim to provide a platform for research in AUV to undergraduate students. This is the second vehicle which is being designed by AUV-IITK team to participate in 6th NIOT-SAVe competition organized by the National Institute of Ocean Technology, Chennai. The Vehicle has been completely redesigned with the major improvements in modularity and ease of access of all the components, keeping the design very compact and efficient. New advancements in the vehicle include, power distribution system and monitoring system. The sensors include the inertial measurement units (IMU), hydrophone array, a depth sensor, and two RGB cameras. The current vehicle features hot swappable battery pods giving a huge advantage over the previous vehicle, for longer runtime.

Cyber-Physical Systems (CPSs) such as those found within autonomous vehicles are increasingly adopting Artificial Neural Network (ANN)-based controllers. To ensure the safety of these controllers, there is a spate of recent activity to formally verify the ANN-based designs. There are two challenges with these approaches: (1) The verification of such systems is difficult and time consuming. (2) These verified controllers are not able to adapt to frequent requirements changes, which are typical in situations like autonomous driving. This raises the question: how can trained and verified controllers, which have gone through expensive training and verification processes, be re-used to deal with requirement changes? This paper addresses this challenge for the first time by proposing a new framework that is capable of dealing with requirement changes at runtime through a mechanism we term runtime interchange. Our approach functions via a continual exchange and selection process of multiple pre-verified controllers. It represents a key step on the way to component-oriented engineering for intelligent designs, as it preserves the behaviours of the original controllers while introducing additional functionality. To demonstrate the efficacy of our approach we utilise an existing autonomous driving case study as well as a set of smaller benchmarks. These show that introduced overheads are extremely minimal and that the approach is very scalable.

TraQuad is an autonomous tracking quadcopter capable of tracking any moving (or static) object like cars, humans, other drones or any other object on-the-go. This article describes the applications and advantages of TraQuad and the reduction in cost (to about 250$) that has been achieved so far using the hardware and software capabilities and our custom algorithms wherever needed. This description is backed by strong data and the research analyses which have been drawn out of extant information or conducted on own when necessary. This also describes the development of completely autonomous (even GPS is optional) low-cost drone which can act as a major platform for further developments in automation, transportation, reconnaissance and more. We describe our ROS Gazebo simulator and our STATUS algorithms which form the core of our development of our object tracking drone for generic purposes.

北京阿比特科技有限公司