We propose a new algorithm for Promise Constraint Satisfaction Problems PCSPs). It is a combination of the $\textbf{C}$onstraint Basic $\textbf{L}$P relaxation and the $\textbf{A}$ffine I$\textbf{P}$ relaxation (CLAP). We give a characterisation of the power of CLAP in terms of a minion homomorphism. Using this characterisation, we identify a certain weak notion of symmetry which, if satisfied by infinitely many polymorphisms of PCSPs, guarantees tractability. We demonstrate that there are PCSPs solved by CLAP that are not solved by any of the existing algorithms for PCSPs; in particular, not by the BLP+AIP algorithm of Brakensiek et al. [SICOMP'20] and not by a reduction to tractable finite-domain CSPs.
We study the partial search order problem (PSOP) proposed recently by Scheffler [WG 2022]. Given a graph $G$ together with a partial order over the vertices of $G$, this problem determines if there is an $\mathcal{S}$-ordering that is consistent with the given partial order, where $\mathcal{S}$ is a graph search paradigm like BFS, DFS, etc. This problem naturally generalizes the end-vertex problem which has received much attention over the past few years. It also generalizes the so-called ${\mathcal{F}}$-tree recognition problem which has just been studied in the literature recently. Our main contribution is a polynomial-time dynamic programming algorithm for the PSOP on chordal graphs with respect to the maximum cardinality search (MCS). This resolves one of the most intriguing open questions left in the work of Sheffler [WG 2022]. To obtain our result, we propose the notion of layer structure and study numerous related structural properties which might be of independent interest.
We describe a practical algorithm for computing normal forms for semigroups and monoids with finite presentations satisfying so-called small overlap conditions. Small overlap conditions are natural conditions on the relations in a presentation, which were introduced by J. H. Remmers and subsequently studied extensively by M. Kambites. Presentations satisfying these conditions are ubiquitous; Kambites showed that a randomly chosen finite presentation satisfies the $C(4)$ condition with probability tending to 1 as the sum of the lengths of relation words tends to infinity. Kambites also showed that several key problems for finitely presented semigroups and monoids are tractable in $C(4)$ monoids: the word problem is solvable in $O(\min\{|u|, |v|\})$ time in the size of the input words $u$ and $v$; the uniform word problem for $\langle A|R\rangle$ is solvable in $O(N ^ 2 \min\{|u|, |v|\})$ where $N$ is the sum of the lengths of the words in $R$; and a normal form for any given word $u$ can be found in $O(|u|)$ time. Although Kambites' algorithm for solving the word problem in $C(4)$ monoids is highly practical, it appears that the coefficients in the linear time algorithm for computing normal forms are too large in practice. In this paper, we present an algorithm for computing normal forms in $C(4)$ monoids that has time complexity $O(|u| ^ 2)$ for input word $u$, but where the coefficients are sufficiently small to allow for practical computation. Additionally, we show that the uniform word problem for small overlap monoids can be solved in $O(N \min\{|u|, |v|\})$ time.
The goal of the group testing problem is to identify a set of defective items within a larger set of items, using suitably-designed tests whose outcomes indicate whether any defective item is present. In this paper, we study how the number of tests can be significantly decreased by leveraging the structural dependencies between the items, i.e., by incorporating prior information. To do so, we pursue two different perspectives: (i) As a generalization of the uniform combinatorial prior, we consider the case that the defective set is uniform over a \emph{subset} of all possible sets of a given size, and study how this impacts the information-theoretic limits on the number of tests for approximate recovery; (ii) As a generalization of the i.i.d.~prior, we introduce a new class of priors based on the Ising model, where the associated graph represents interactions between items. We show that this naturally leads to an Integer Quadratic Program decoder, which can be converted to an Integer Linear Program and/or relaxed to a non-integer variant for improved computational complexity, while maintaining strong empirical recovery performance.
We present new methods for assessing the privacy guarantees of an algorithm with regard to R\'enyi Differential Privacy. To the best of our knowledge, this work is the first to address this problem in a black-box scenario, where only algorithmic outputs are available. To quantify privacy leakage, we devise a new estimator for the R\'enyi divergence of a pair of output distributions. This estimator is transformed into a statistical lower bound that is proven to hold for large samples with high probability. Our method is applicable for a broad class of algorithms, including many well-known examples from the privacy literature. We demonstrate the effectiveness of our approach by experiments encompassing algorithms and privacy enhancing methods that have not been considered in related works.
Integrated information theory (IIT) is a theoretical framework that provides a quantitative measure to estimate when a physical system is conscious, its degree of consciousness, and the complexity of the qualia space that the system is experiencing. Formally, IIT rests on the assumption that if a surrogate physical system can fully embed the phenomenological properties of consciousness, then the system properties must be constrained by the properties of the qualia being experienced. Following this assumption, IIT represents the physical system as a network of interconnected elements that can be thought of as a probabilistic causal graph, $\mathcal{G}$, where each node has an input-output function and all the graph is encoded in a transition probability matrix. Consequently, IIT's quantitative measure of consciousness, $\Phi$, is computed with respect to the transition probability matrix and the present state of the graph. In this paper, we provide a random search algorithm that is able to optimize $\Phi$ in order to investigate, as the number of nodes increases, the structure of the graphs that have higher $\Phi$. We also provide arguments that show the difficulties of applying more complex black-box search algorithms, such as Bayesian optimization or metaheuristics, in this particular problem. Additionally, we suggest specific research lines for these techniques to enhance the search algorithm that guarantees maximal $\Phi$.
Power analyses are an important aspect of experimental design, because they help determine how experiments are implemented in practice. It is common to specify a desired level of power and compute the sample size necessary to obtain that power. Such calculations are well-known for completely randomized experiments, but there can be many benefits to using other experimental designs. For example, it has recently been established that rerandomization, where subjects are randomized until covariate balance is obtained, increases the precision of causal effect estimators. This work establishes the power of rerandomized treatment-control experiments, thereby allowing for sample size calculators. We find the surprising result that, while power is often greater under rerandomization than complete randomization, the opposite can occur for very small treatment effects. The reason is that inference under rerandomization can be relatively more conservative, in the sense that it can have a lower type-I error at the same nominal significance level, and this additional conservativeness adversely affects power. This surprising result is due to treatment effect heterogeneity, a quantity often ignored in power analyses. We find that heterogeneity increases power for large effect sizes but decreases power for small effect sizes.
Via operator theoretic methods, we formalize the concentration phenomenon for a given observable `$r$' of a discrete time Markov chain with `$\mu_{\pi}$' as invariant ergodic measure, possibly having support on an unbounded state space. The main contribution of this paper is circumventing tedious probabilistic methods with a study of a composition of the Markov transition operator $P$ followed by a multiplication operator defined by $e^{r}$. It turns out that even if the observable/ reward function is unbounded, but for some for some $q>2$, $\|e^{r}\|_{q \rightarrow 2} \propto \exp\big(\mu_{\pi}(r) +\frac{2q}{q-2}\big) $ and $P$ is hyperbounded with norm control $\|P\|_{2 \rightarrow q }< e^{\frac{1}{2}[\frac{1}{2}-\frac{1}{q}]}$, sharp non-asymptotic concentration bounds follow. \emph{Transport-entropy} inequality ensures the aforementioned upper bound on multiplication operator for all $q>2$. The role of \emph{reversibility} in concentration phenomenon is demystified. These results are particularly useful for the reinforcement learning and controls communities as they allow for concentration inequalities w.r.t standard unbounded obersvables/reward functions where exact knowledge of the system is not available, let alone the reversibility of stationary measure.
Graph Neural Networks (GNNs), which generalize deep neural networks to graph-structured data, have drawn considerable attention and achieved state-of-the-art performance in numerous graph related tasks. However, existing GNN models mainly focus on designing graph convolution operations. The graph pooling (or downsampling) operations, that play an important role in learning hierarchical representations, are usually overlooked. In this paper, we propose a novel graph pooling operator, called Hierarchical Graph Pooling with Structure Learning (HGP-SL), which can be integrated into various graph neural network architectures. HGP-SL incorporates graph pooling and structure learning into a unified module to generate hierarchical representations of graphs. More specifically, the graph pooling operation adaptively selects a subset of nodes to form an induced subgraph for the subsequent layers. To preserve the integrity of graph's topological information, we further introduce a structure learning mechanism to learn a refined graph structure for the pooled graph at each layer. By combining HGP-SL operator with graph neural networks, we perform graph level representation learning with focus on graph classification task. Experimental results on six widely used benchmarks demonstrate the effectiveness of our proposed model.
The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.
Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.