In this paper, we present a novel person reidentification (PRe-ID) system that based on tensor feature representation and multilinear subspace learning. Our approach utilizes pretrained CNNs for high-level feature extraction, along with Local Maximal Occurrence (LOMO) and Gaussian Of Gaussian (GOG ) descriptors. Additionally, Cross-View Quadratic Discriminant Analysis (TXQDA) algorithm is used for multilinear subspace learning, which models the data in a tensor framework to enhance discriminative capabilities. Similarity measure based on Mahalanobis distance is used for matching between training and test pedestrian images. Experimental evaluations on VIPeR and PRID450s datasets demonstrate the effectiveness of our method.
In this paper, we introduce the Volumetric Relightable Morphable Model (VRMM), a novel volumetric and parametric facial prior for 3D face modeling. While recent volumetric prior models offer improvements over traditional methods like 3D Morphable Models (3DMMs), they face challenges in model learning and personalized reconstructions. Our VRMM overcomes these by employing a novel training framework that efficiently disentangles and encodes latent spaces of identity, expression, and lighting into low-dimensional representations. This framework, designed with self-supervised learning, significantly reduces the constraints for training data, making it more feasible in practice. The learned VRMM offers relighting capabilities and encompasses a comprehensive range of expressions. We demonstrate the versatility and effectiveness of VRMM through various applications like avatar generation, facial reconstruction, and animation. Additionally, we address the common issue of overfitting in generative volumetric models with a novel prior-preserving personalization framework based on VRMM. Such an approach enables accurate 3D face reconstruction from even a single portrait input. Our experiments showcase the potential of VRMM to significantly enhance the field of 3D face modeling.
This paper introduces a novel decision-making framework that promotes consistency among decisions made by diverse models while utilizing external knowledge. Leveraging the Integer Linear Programming (ILP) framework, we map predictions from various models into globally normalized and comparable values by incorporating information about decisions' prior probability, confidence (uncertainty), and the models' expected accuracy. Our empirical study demonstrates the superiority of our approach over conventional baselines on multiple datasets.
Large Language Models (LLMs) have achieved remarkable success in code completion, as evidenced by their essential roles in developing code assistant services such as Copilot. Being trained on in-file contexts, current LLMs are quite effective in completing code for single source files. However, it is challenging for them to conduct repository-level code completion for large software projects that require cross-file information. Existing research on LLM-based repository-level code completion identifies and integrates cross-file contexts, but it suffers from low accuracy and limited context length of LLMs. In this paper, we argue that Integrated Development Environments (IDEs) can provide direct, accurate and real-time cross-file information for repository-level code completion. We propose IDECoder, a practical framework that leverages IDE native static contexts for cross-context construction and diagnosis results for self-refinement. IDECoder utilizes the rich cross-context information available in IDEs to enhance the capabilities of LLMs of repository-level code completion. We conducted preliminary experiments to validate the performance of IDECoder and observed that this synergy represents a promising trend for future exploration.
In this paper, we propose a continuous-time lidar-inertial odometry (CT-LIO) system named SLICT2, which promotes two main insights. One, contrary to conventional wisdom, CT-LIO algorithm can be optimized by linear solvers in only a few iterations, which is more efficient than commonly used nonlinear solvers. Two, CT-LIO benefits more from the correct association than the number of iterations. Based on these ideas, we implement our method with a customized solver where the feature association process is performed immediately after each incremental step, and the solution can converge within a few iterations. Our implementation can achieve real-time performance with a high density of control points while yielding competitive performance in highly dynamical motion scenarios. We demonstrate the advantages of our method by comparing with other existing state-of-the-art CT-LIO methods. The source code will be released for the benefit of the community.
In this paper, we propose a novel graph neural network-based recommendation model called KGLN, which leverages Knowledge Graph (KG) information to enhance the accuracy and effectiveness of personalized recommendations. We first use a single-layer neural network to merge individual node features in the graph, and then adjust the aggregation weights of neighboring entities by incorporating influence factors. The model evolves from a single layer to multiple layers through iteration, enabling entities to access extensive multi-order associated entity information. The final step involves integrating features of entities and users to produce a recommendation score. The model performance was evaluated by comparing its effects on various aggregation methods and influence factors. In tests over the MovieLen-1M and Book-Crossing datasets, KGLN shows an Area Under the ROC curve (AUC) improvement of 0.3% to 5.9% and 1.1% to 8.2%, respectively, which is better than existing benchmark methods like LibFM, DeepFM, Wide&Deep, and RippleNet.
While the great capability of Transformers significantly boosts prediction accuracy, it could also yield overconfident predictions and require calibrated uncertainty estimation, which can be commonly tackled by Gaussian processes (GPs). Existing works apply GPs with symmetric kernels under variational inference to the attention kernel; however, omitting the fact that attention kernels are in essence asymmetric. Moreover, the complexity of deriving the GP posteriors remains high for large-scale data. In this work, we propose Kernel-Eigen Pair Sparse Variational Gaussian Processes (KEP-SVGP) for building uncertainty-aware self-attention where the asymmetry of attention kernels is tackled by Kernel SVD (KSVD) and a reduced complexity is acquired. Through KEP-SVGP, i) the SVGP pair induced by the two sets of singular vectors from KSVD w.r.t. the attention kernel fully characterizes the asymmetry; ii) using only a small set of adjoint eigenfunctions from KSVD, the derivation of SVGP posteriors can be based on the inversion of a diagonal matrix containing singular values, contributing to a reduction in time complexity; iii) an evidence lower bound is derived so that variational parameters can be optimized towards this objective. Experiments verify our excellent performances and efficiency on in-distribution, distribution-shift and out-of-distribution benchmarks.
In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.
Non-IID data present a tough challenge for federated learning. In this paper, we explore a novel idea of facilitating pairwise collaborations between clients with similar data. We propose FedAMP, a new method employing federated attentive message passing to facilitate similar clients to collaborate more. We establish the convergence of FedAMP for both convex and non-convex models, and propose a heuristic method to further improve the performance of FedAMP when clients adopt deep neural networks as personalized models. Our extensive experiments on benchmark data sets demonstrate the superior performance of the proposed methods.
In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.
In this paper, we introduce the Reinforced Mnemonic Reader for machine reading comprehension tasks, which enhances previous attentive readers in two aspects. First, a reattention mechanism is proposed to refine current attentions by directly accessing to past attentions that are temporally memorized in a multi-round alignment architecture, so as to avoid the problems of attention redundancy and attention deficiency. Second, a new optimization approach, called dynamic-critical reinforcement learning, is introduced to extend the standard supervised method. It always encourages to predict a more acceptable answer so as to address the convergence suppression problem occurred in traditional reinforcement learning algorithms. Extensive experiments on the Stanford Question Answering Dataset (SQuAD) show that our model achieves state-of-the-art results. Meanwhile, our model outperforms previous systems by over 6% in terms of both Exact Match and F1 metrics on two adversarial SQuAD datasets.