Approximate Bayesian computation (ABC) is commonly used for parameter estimation and model comparison for intractable simulator-based models whose likelihood function cannot be evaluated. In this paper we instead investigate the feasibility of ABC as a generic approximate method for predictive inference, in particular, for computing the posterior predictive distribution of future observations or missing data of interest. We consider three complementary ABC approaches for this goal, each based on different assumptions regarding which predictive density of the intractable model can be sampled from. The case where only simulation from the joint density of the observed and future data given the model parameters can be used for inference is given particular attention and it is shown that the ideal summary statistic in this setting is minimal predictive sufficient instead of merely minimal sufficient (in the ordinary sense). An ABC prediction approach that takes advantage of a certain latent variable representation is also investigated. We additionally show how common ABC sampling algorithms can be used in the predictive settings considered. Our main results are first illustrated by using simple time-series models that facilitate analytical treatment, and later by using two common intractable dynamic models.
We describe a new design-based framework for drawing causal inference in randomized experiments. Causal effects in the framework are defined as linear functionals evaluated at potential outcome functions. Knowledge and assumptions about the potential outcome functions are encoded as function spaces. This makes the framework expressive, allowing experimenters to formulate and investigate a wide range of causal questions. We describe a class of estimators for estimands defined using the framework and investigate their properties. The construction of the estimators is based on the Riesz representation theorem. We provide necessary and sufficient conditions for unbiasedness and consistency. Finally, we provide conditions under which the estimators are asymptotically normal, and describe a conservative variance estimator to facilitate the construction of confidence intervals for the estimands.
A fundamental task in science is to design experiments that yield valuable insights about the system under study. Mathematically, these insights can be represented as a utility or risk function that shapes the value of conducting each experiment. We present PDBAL, a targeted active learning method that adaptively designs experiments to maximize scientific utility. PDBAL takes a user-specified risk function and combines it with a probabilistic model of the experimental outcomes to choose designs that rapidly converge on a high-utility model. We prove theoretical bounds on the label complexity of PDBAL and provide fast closed-form solutions for designing experiments with common exponential family likelihoods. In simulation studies, PDBAL consistently outperforms standard untargeted approaches that focus on maximizing expected information gain over the design space. Finally, we demonstrate the scientific potential of PDBAL through a study on a large cancer drug screen dataset where PDBAL quickly recovers the most efficacious drugs with a small fraction of the total number of experiments.
We develop a novel deep learning method for uncertainty quantification in stochastic partial differential equations based on Bayesian neural network (BNN) and Hamiltonian Monte Carlo (HMC). A BNN efficiently learns the posterior distribution of the parameters in deep neural networks by performing Bayesian inference on the network parameters. The posterior distribution is efficiently sampled using HMC to quantify uncertainties in the system. Several numerical examples are shown for both forward and inverse problems in high dimension to demonstrate the effectiveness of the proposed method for uncertainty quantification. These also show promising results that the computational cost is almost independent of the dimension of the problem demonstrating the potential of the method for tackling the so-called curse of dimensionality.
Human awareness in robot motion planning is crucial for seamless interaction with humans. Many existing techniques slow down, stop, or change the robot's trajectory locally to avoid collisions with humans. Although using the information on the human's state in the path planning phase could reduce future interference with the human's movements and make safety stops less frequent, such an approach is less widespread. This paper proposes a novel approach to embedding a human model in the robot's path planner. The method explicitly addresses the problem of minimizing the path execution time, including slowdowns and stops owed to the proximity of humans. For this purpose, it converts safety speed limits into configuration-space cost functions that drive the path's optimization. The costmap can be updated based on the observed or predicted state of the human. The method can handle deterministic and probabilistic representations of the human state and is independent of the prediction algorithm. Numerical and experimental results on an industrial collaborative cell demonstrate that the proposed approach consistently reduces the robot's execution time and avoids unnecessary safety speed reductions.
Derivatives are a key nonparametric functional in wide-ranging applications where the rate of change of an unknown function is of interest. In the Bayesian paradigm, Gaussian processes (GPs) are routinely used as a flexible prior for unknown functions, and are arguably one of the most popular tools in many areas. However, little is known about the optimal modelling strategy and theoretical properties when using GPs for derivatives. In this article, we study a plug-in strategy by differentiating the posterior distribution with GP priors for derivatives of any order. This practically appealing plug-in GP method has been previously perceived as suboptimal and degraded, but this is not necessarily the case. We provide posterior contraction rates for plug-in GPs and establish that they remarkably adapt to derivative orders. We show that the posterior measure of the regression function and its derivatives, with the same choice of hyperparameter that does not depend on the order of derivatives, converges at the minimax optimal rate up to a logarithmic factor for functions in certain classes. This to the best of our knowledge provides the first positive result for plug-in GPs in the context of inferring derivative functionals, and leads to a practically simple nonparametric Bayesian method with guided hyperparameter tuning for simultaneously estimating the regression function and its derivatives. Simulations show competitive finite sample performance of the plug-in GP method. A climate change application on analyzing the global sea-level rise is discussed.
To investigate the structure of individual differences in performance on behavioral tasks, Haaf and Rouder (2017) developed a class of hierarchical Bayesian mixed models with varying levels of constraint on the individual effects. The models are then compared via Bayes factors, telling us which model best predicts the observed data. One common criticism of their method is that the observed data are assumed to be drawn from a normal distribution. However, for most cognitive tasks, the primary measure of performance is a response time, the distribution of which is well known to not be normal. In this paper, I investigate the assumption of normality for two datasets in numerical cognition. Specifically, I show that using a shifted lognormal model for the response times does not change the overall pattern of inference. Further, since the model-estimated effects are now on a logarithmic scale, the interpretation of the modeling becomes more difficult, particularly because the estimated effect is now multiplicative rather than additive. As a result, I recommend that even though response times are not normally distributed in general, the simplification afforded by the Haaf and Rouder (2017) approach provides a pragmatic approach to modeling individual differences in behavioral tasks.
We propose a Bayesian tensor-on-tensor regression approach to predict a multidimensional array (tensor) of arbitrary dimensions from another tensor of arbitrary dimensions, building upon the Tucker decomposition of the regression coefficient tensor. Traditional tensor regression methods making use of the Tucker decomposition either assume the dimension of the core tensor to be known or estimate it via cross-validation or some model selection criteria. However, no existing method can simultaneously estimate the model dimension (the dimension of the core tensor) and other model parameters. To fill this gap, we develop an efficient Markov Chain Monte Carlo (MCMC) algorithm to estimate both the model dimension and parameters for posterior inference. Besides the MCMC sampler, we also develop an ultra-fast optimization-based computing algorithm wherein the maximum a posteriori estimators for parameters are computed, and the model dimension is optimized via a simulated annealing algorithm. The proposed Bayesian framework provides a natural way for uncertainty quantification. Through extensive simulation studies, we evaluate the proposed Bayesian tensor-on-tensor regression model and show its superior performance compared to alternative methods. We also demonstrate its practical effectiveness by applying it to two real-world datasets, including facial imaging data and 3D motion data.
Bayesian model comparison (BMC) offers a principled probabilistic approach to study and rank competing models. In standard BMC, we construct a discrete probability distribution over the set of possible models, conditional on the observed data of interest. These posterior model probabilities (PMPs) are measures of uncertainty, but, when derived from a finite number of observations, are also uncertain themselves. In this paper, we conceptualize distinct levels of uncertainty which arise in BMC. We explore a fully probabilistic framework for quantifying meta-uncertainty, resulting in an applied method to enhance any BMC workflow. Drawing on both Bayesian and frequentist techniques, we represent the uncertainty over the uncertain PMPs via meta-models which combine simulated and observed data into a predictive distribution for PMPs on new data. We demonstrate the utility of the proposed method in the context of conjugate Bayesian regression, likelihood-based inference with Markov chain Monte Carlo, and simulation-based inference with neural networks.
We propose a framework for planning in unknown dynamic environments with probabilistic safety guarantees using conformal prediction. Particularly, we design a model predictive controller (MPC) that uses i) trajectory predictions of the dynamic environment, and ii) prediction regions quantifying the uncertainty of the predictions. To obtain prediction regions, we use conformal prediction, a statistical tool for uncertainty quantification, that requires availability of offline trajectory data - a reasonable assumption in many applications such as autonomous driving. The prediction regions are valid, i.e., they hold with a user-defined probability, so that the MPC is provably safe. We illustrate the results in the self-driving car simulator CARLA at a pedestrian-filled intersection. The strength of our approach is compatibility with state of the art trajectory predictors, e.g., RNNs and LSTMs, while making no assumptions on the underlying trajectory-generating distribution. To the best of our knowledge, these are the first results that provide valid safety guarantees in such a setting.
Graph Neural Networks (GNNs) have received considerable attention on graph-structured data learning for a wide variety of tasks. The well-designed propagation mechanism which has been demonstrated effective is the most fundamental part of GNNs. Although most of GNNs basically follow a message passing manner, litter effort has been made to discover and analyze their essential relations. In this paper, we establish a surprising connection between different propagation mechanisms with a unified optimization problem, showing that despite the proliferation of various GNNs, in fact, their proposed propagation mechanisms are the optimal solution optimizing a feature fitting function over a wide class of graph kernels with a graph regularization term. Our proposed unified optimization framework, summarizing the commonalities between several of the most representative GNNs, not only provides a macroscopic view on surveying the relations between different GNNs, but also further opens up new opportunities for flexibly designing new GNNs. With the proposed framework, we discover that existing works usually utilize naive graph convolutional kernels for feature fitting function, and we further develop two novel objective functions considering adjustable graph kernels showing low-pass or high-pass filtering capabilities respectively. Moreover, we provide the convergence proofs and expressive power comparisons for the proposed models. Extensive experiments on benchmark datasets clearly show that the proposed GNNs not only outperform the state-of-the-art methods but also have good ability to alleviate over-smoothing, and further verify the feasibility for designing GNNs with our unified optimization framework.