亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Mokka is a partial-synchronous, strong consistent BFT consensus algorithm for reaching the consensus about a certain value in open networks. This algorithm has some common approaches nested from RAFT, but its nature and design make Mokka a better solution for DLT (distributed ledger).

相關內容

Common tasks encountered in epidemiology, including disease incidence estimation and causal inference, rely on predictive modeling. Constructing a predictive model can be thought of as learning a prediction function, i.e., a function that takes as input covariate data and outputs a predicted value. Many strategies for learning these functions from data are available, from parametric regressions to machine learning algorithms. It can be challenging to choose an approach, as it is impossible to know in advance which one is the most suitable for a particular dataset and prediction task at hand. The super learner (SL) is an algorithm that alleviates concerns over selecting the one "right" strategy while providing the freedom to consider many of them, such as those recommended by collaborators, used in related research, or specified by subject-matter experts. It is an entirely pre-specified and data-adaptive strategy for predictive modeling. To ensure the SL is well-specified for learning the prediction function, the analyst does need to make a few important choices. In this Education Corner article, we provide step-by-step guidelines for making these choices, walking the reader through each of them and providing intuition along the way. In doing so, we aim to empower the analyst to tailor the SL specification to their prediction task, thereby ensuring their SL performs as well as possible. A flowchart provides a concise, easy-to-follow summary of key suggestions and heuristics, based on our accumulated experience, and guided by theory.

In this paper, we consider a resilient consensus problem for the multi-agent network where some of the agents are subject to Byzantine attacks and may transmit erroneous state values to their neighbors. In particular, we develop an event-triggered update rule to tackle this problem as well as reduce the communication for each agent. Our approach is based on the mean subsequence reduced (MSR) algorithm with agents being capable to communicate with multi-hop neighbors. Since delays are critical in such an environment, we provide necessary graph conditions for the proposed algorithm to perform well with delays in the communication. We highlight that through multi-hop communication, the network connectivity can be reduced especially in comparison with the common onehop communication case. Lastly, we show the effectiveness of the proposed algorithm by a numerical example.

The problem of Byzantine consensus has been key to designing secure distributed systems. However, it is particularly difficult, mainly due to the presence of Byzantine processes that act arbitrarily and the unknown message delays in general networks. Although it is well known that both safety and liveness are at risk as soon as $n/3$ Byzantine processes fail, very few works attempted to characterize precisely the faults that produce safety violations from the faults that produce termination violations. In this paper, we present a new lower bound on the solvability of the consensus problem by distinguishing deceitful faults violating safety and benign faults violating termination from the more general Byzantine faults, in what we call the Byzantine-deceitful-benign fault model. We show that one cannot solve consensus if $n\leq 3t+d+2q$ with $t$ Byzantine processes, $d$ deceitful processes, and $q$ benign processes. In addition, we show that this bound is tight by presenting the Basilic class of consensus protocols that solve consensus when $n > 3t+d+2q$. These protocols differ in the number of processes from which they wait to receive messages before progressing. Each of these protocols is thus better suited for some applications depending on the predominance of benign or deceitful faults. Finally, we study the fault tolerance of the Basilic class of consensus protocols in the context of blockchains that need to solve the weaker problem of eventual consensus. We demonstrate that Basilic solves this problem with only $n > 2t+d+q$, hence demonstrating how it can strengthen blockchain security.

A novel distributed control law for consensus of networked double integrator systems with biased measurements is developed in this article. The agents measure relative positions over a time-varying, undirected graph with an unknown and constant sensor bias corrupting the measurements. An adaptive control law is derived using Lyapunov methods to estimate the individual sensor biases accurately. The proposed algorithm ensures that position consensus is achieved exponentially in addition to bias estimation. The results leverage recent advances in collective initial excitation based results in adaptive estimation. Conditions connecting bipartite graphs and collective initial excitation are also developed. The algorithms are illustrated via simulation studies on a network of double integrators with local communication and biased measurements.

This paper presents an approach to trajectory-centric learning control based on contraction metrics and disturbance estimation for nonlinear systems subject to matched uncertainties. The proposed approach allows for the use of deep neural networks to learn uncertain dynamics while still providing guarantees of transient tracking performance throughout the learning phase. Within the proposed approach, a disturbance estimation law is adopted to estimate the pointwise value of the uncertainty, with pre-computable estimation error bounds (EEBs). The learned dynamics, the estimated disturbances, and the EEBs are then incorporated in a robust Riemannian energy condition to compute the control law that guarantees exponential convergence of actual trajectories to desired ones throughout the learning phase, even when the learned model is poor. On the other hand, with improved accuracy, the learned model can be incorporated into a high-level planner to plan better trajectories with improved performance, e.g., lower energy consumption and shorter travel time. The proposed framework is validated on a planar quadrotor navigation example.

We study the decentralized consensus and stochastic optimization problems with compressed communications over static directed graphs. We propose an iterative gradient-based algorithm that compresses messages according to a desired compression ratio. The proposed method provably reduces the communication overhead on the network at every communication round. Contrary to existing literature, we allow for arbitrary compression ratios in the communicated messages. We show a linear convergence rate for the proposed method on the consensus problem. Moreover, we provide explicit convergence rates for decentralized stochastic optimization problems on smooth functions that are either (i) strongly convex, (ii) convex, or (iii) non-convex. Finally, we provide numerical experiments to illustrate convergence under arbitrary compression ratios and the communication efficiency of our algorithm.

This technical report presents our solution to the HACS Temporal Action Localization Challenge 2021, Weakly-Supervised Learning Track. The goal of weakly-supervised temporal action localization is to temporally locate and classify action of interest in untrimmed videos given only video-level labels. We adopt the two-stream consensus network (TSCN) as the main framework in this challenge. The TSCN consists of a two-stream base model training procedure and a pseudo ground truth learning procedure. The base model training encourages the model to predict reliable predictions based on single modality (i.e., RGB or optical flow), based on the fusion of which a pseudo ground truth is generated and in turn used as supervision to train the base models. On the HACS v1.1.1 dataset, without fine-tuning the feature-extraction I3D models, our method achieves 22.20% on the validation set and 21.68% on the testing set in terms of average mAP. Our solution ranked the 2nd in this challenge, and we hope our method can serve as a baseline for future academic research.

An important challenge in statistical analysis lies in controlling the estimation bias when handling the ever-increasing data size and model complexity. For example, approximate methods are increasingly used to address the analytical and/or computational challenges when implementing standard estimators, but they often lead to inconsistent estimators. So consistent estimators can be difficult to obtain, especially for complex models and/or in settings where the number of parameters diverges with the sample size. We propose a general simulation-based estimation framework that allows to construct consistent and bias corrected estimators for parameters of increasing dimensions. The key advantage of the proposed framework is that it only requires to compute a simple inconsistent estimator multiple times. The resulting Just Identified iNdirect Inference estimator (JINI) enjoys nice properties, including consistency, asymptotic normality, and finite sample bias correction better than alternative methods. We further provide a simple algorithm to construct the JINI in a computationally efficient manner. Therefore, the JINI is especially useful in settings where standard methods may be challenging to apply, for example, in the presence of misclassification and rounding. We consider comprehensive simulation studies and analyze an alcohol consumption data example to illustrate the excellent performance and usefulness of the method.

In randomized experiments, the actual treatments received by some experimental units may differ from their treatment assignments. This non-compliance issue often occurs in clinical trials, social experiments, and the applications of randomized experiments in many other fields. Under certain assumptions, the average treatment effect for the compliers is identifiable and equal to the ratio of the intention-to-treat effects of the potential outcomes to that of the potential treatment received. To improve the estimation efficiency, we propose three model-assisted estimators for the complier average treatment effect in randomized experiments with a binary outcome. We study their asymptotic properties, compare their efficiencies with that of the Wald estimator, and propose the Neyman-type conservative variance estimators to facilitate valid inferences. Moreover, we extend our methods and theory to estimate the multiplicative complier average treatment effect. Our analysis is randomization-based, allowing the working models to be misspecified. Finally, we conduct simulation studies to illustrate the advantages of the model-assisted methods and apply these analysis methods in a randomized experiment to evaluate the effect of academic services or incentives on academic performance.

While recent studies on semi-supervised learning have shown remarkable progress in leveraging both labeled and unlabeled data, most of them presume a basic setting of the model is randomly initialized. In this work, we consider semi-supervised learning and transfer learning jointly, leading to a more practical and competitive paradigm that can utilize both powerful pre-trained models from source domain as well as labeled/unlabeled data in the target domain. To better exploit the value of both pre-trained weights and unlabeled target examples, we introduce adaptive consistency regularization that consists of two complementary components: Adaptive Knowledge Consistency (AKC) on the examples between the source and target model, and Adaptive Representation Consistency (ARC) on the target model between labeled and unlabeled examples. Examples involved in the consistency regularization are adaptively selected according to their potential contributions to the target task. We conduct extensive experiments on several popular benchmarks including CUB-200-2011, MIT Indoor-67, MURA, by fine-tuning the ImageNet pre-trained ResNet-50 model. Results show that our proposed adaptive consistency regularization outperforms state-of-the-art semi-supervised learning techniques such as Pseudo Label, Mean Teacher, and MixMatch. Moreover, our algorithm is orthogonal to existing methods and thus able to gain additional improvements on top of MixMatch and FixMatch. Our code is available at //github.com/SHI-Labs/Semi-Supervised-Transfer-Learning.

北京阿比特科技有限公司