Internet-of-Things (IoT) networks are expected to support the wireless connection of massive energy limited IoT nodes. The emerging wireless powered backscatter communications (WPBC) enable IoT nodes to harvest energy from the incident radio frequency signals transmitted by a power beacon (PB) to support their circuit operation, but the energy consumption of the PB (a potentially high cost borne by the network operator) has not been sufficiently studied for WPBC. In this paper, we aim to minimize the energy consumption of the PB while satisfying the throughput requirement per IoT node by jointly optimizing the time division multiple access (TDMA) time slot duration and backscatter reflection coefficient of each IoT node and the PB transmit power per time slot. As the formulated joint optimization problem is non-convex, we transform it into a convex problem by using auxiliary variables, then employ the Lagrange dual method to obtain the optimal solutions. To reduce the implementation complexity required for adjusting the PB's transmit power every time slot, we keep the PB transmit power constant in each time block and solve the corresponding PB energy consumption minimization problem by using auxiliary variables, the block coordinated decent method and the successive convex approximation technique. Based on the above solutions, two iterative algorithms are proposed for the dynamic PB transmit power scheme and the static PB transmit power scheme. The simulation results show that the dynamic PB transmit power scheme and the static PB transmit power scheme both achieve a lower PB energy consumption than the benchmark schemes, and the former achieves the lowest PB energy consumption.
Cell-free massive multiple-input-multiple-output (CF-mMIMO) is a next-generation wireless access technology that offers superior coverage and spectral efficiency compared to conventional MIMO. With many future applications in unlicensed spectrum bands, networks will likely experience and may even be limited by out-of-system (OoS) interference. The OoS interference differs from the in-system interference from other serving users in that for OoS interference, the associated pilot signals are unknown or non-existent, which makes estimation of the OoS interferer channel difficult. In this paper, we propose a novel sequential algorithm for the suppression of OoS interference for uplink CF-mMIMO with a stripe (daisy-chain) topology. The proposed method has comparable performance to that of a fully centralized interference rejection combining algorithm but has substantially less fronthaul load requirements.
The success of a multi-kilometre drive by a solar-powered rover at the lunar south pole depends upon careful planning in space and time due to highly dynamic solar illumination conditions. An additional challenge is that real-world robots may be subject to random faults that can temporarily delay long-range traverses. The majority of existing global spatiotemporal planners assume a deterministic rover-environment model and do not account for random faults. In this paper, we consider a random fault profile with a known, average spatial fault rate. We introduce a methodology to compute recovery policies that maximize the probability of survival of a solar-powered rover from different start states. A recovery policy defines a set of recourse actions to reach a location with sufficient battery energy remaining, given the local solar illumination conditions. We solve a stochastic reach-avoid problem using dynamic programming to find such optimal recovery policies. Our focus, in part, is on the implications of state space discretization, which is often required in practical implementations. We propose a modified dynamic programming algorithm that conservatively accounts for approximation errors. To demonstrate the benefits of our approach, we compare against existing methods in scenarios where a solar-powered rover seeks to safely exit from permanently shadowed regions in the Cabeus area at the lunar south pole. We also highlight the relevance of our methodology for mission formulation and trade safety analysis by empirically comparing different rover mobility models in simulated recovery drives from the LCROSS crash region.
Whereas Laplacian and modularity based spectral clustering is apt to dense graphs, recent results show that for sparse ones, the non-backtracking spectrum is the best candidate to find assortative clusters of nodes. Here belief propagation in the sparse stochastic block model is derived with arbitrary given model parameters that results in a non-linear system of equations; with linear approximation, the spectrum of the non-backtracking matrix is able to specify the number $k$ of clusters. Then the model parameters themselves can be estimated by the EM algorithm. Bond percolation in the assortative model is considered in the following two senses: the within- and between-cluster edge probabilities decrease with the number of nodes and edges coming into existence in this way are retained with probability $\beta$. As a consequence, the optimal $k$ is the number of the structural real eigenvalues (greater than $\sqrt{c}$, where $c$ is the average degree) of the non-backtracking matrix of the graph. Assuming, these eigenvalues $\mu_1 >\dots > \mu_k$ are distinct, the multiple phase transitions obtained for $\beta$ are $\beta_i =\frac{c}{\mu_i^2}$; further, at $\beta_i$ the number of detectable clusters is $i$, for $i=1,\dots ,k$. Inflation-deflation techniques are also discussed to classify the nodes themselves, which can be the base of the sparse spectral clustering.
We study parametric inference for hypo-elliptic Stochastic Differential Equations (SDEs). Existing research focuses on a particular class of hypo-elliptic SDEs, with components split into `rough'/`smooth' and noise from rough components propagating directly onto smooth ones, but some critical model classes arising in applications have yet to be explored. We aim to cover this gap, thus analyse the highly degenerate class of SDEs, where components split into further sub-groups. Such models include e.g.~the notable case of generalised Langevin equations. We propose a tailored time-discretisation scheme and provide asymptotic results supporting our scheme in the context of high-frequency, full observations. The proposed discretisation scheme is applicable in much more general data regimes and is shown to overcome biases via simulation studies also in the practical case when only a smooth component is observed. Joint consideration of our study for highly degenerate SDEs and existing research provides a general `recipe' for the development of time-discretisation schemes to be used within statistical methods for general classes of hypo-elliptic SDEs.
In backscatter communication (BC), a passive tag transmits information by just affecting an external electromagnetic field through load modulation. Thereby, the feed current of the excited tag antenna is modulated by adapting the passive termination load. This paper studies the achievable information rates with a freely adaptable passive load. As a prerequisite, we unify monostatic, bistatic, and ambient BC with circuit-based system modeling. We present the crucial insight that channel capacity is described by existing results on peak-power-limited quadrature Gaussian channels, because the steady-state tag current phasor lies on a disk. Consequently, we derive the channel capacity for the case of an unmodulated external field, for general passive, purely reactive, or purely resistive tag loads. We find that modulating both resistance and reactance is important for very high rates. We discuss the capacity-achieving load statistics, rate asymptotics, technical conclusions, and rate losses from value-range-constrained loads (which are found to be small for moderate constraints). We then demonstrate that near-capacity rates can be attained by more practical schemes: (i) amplitude-and-phase-shift keying on the reflection coefficient and (ii) simple load circuits of a few switched resistors and capacitors. Finally, we draw conclusions for the ambient BC channel capacity in important special cases.
We propose an unconditionally energy-stable, orthonormality-preserving, component-wise splitting iterative scheme for the Kohn-Sham gradient flow based model in the electronic structure calculation. We first study the scheme discretized in time but still continuous in space. The component-wise splitting iterative scheme changes one wave function at a time, similar to the Gauss-Seidel iteration for solving a linear equation system. Rigorous mathematical derivations are presented to show our proposed scheme indeed satisfies the desired properties. We then study the fully-discretized scheme, where the space is further approximated by a conforming finite element subspace. For the fully-discretized scheme, not only the preservation of orthogonality and normalization (together we called orthonormalization) can be quickly shown using the same idea as for the semi-discretized scheme, but also the highlight property of the scheme, i.e., the unconditional energy stability can be rigorously proven. The scheme allows us to use large time step sizes and deal with small systems involving only a single wave function during each iteration step. Several numerical experiments are performed to verify the theoretical analysis, where the number of iterations is indeed greatly reduced as compared to similar examples solved by the Kohn-Sham gradient flow based model in the literature.
In this paper, we propose a method for estimating model parameters using Small-Angle Scattering (SAS) data based on the Bayesian inference. Conventional SAS data analyses involve processes of manual parameter adjustment by analysts or optimization using gradient methods. These analysis processes tend to involve heuristic approaches and may lead to local solutions.Furthermore, it is difficult to evaluate the reliability of the results obtained by conventional analysis methods. Our method solves these problems by estimating model parameters as probability distributions from SAS data using the framework of the Bayesian inference. We evaluate the performance of our method through numerical experiments using artificial data of representative measurement target models.From the results of the numerical experiments, we show that our method provides not only high accuracy and reliability of estimation, but also perspectives on the transition point of estimability with respect to the measurement time and the lower bound of the angular domain of the measured data.
This paper presents a fast high-order method for the solution of two-dimensional problems of scattering by penetrable inhomogeneous media, with application to high-frequency configurations containing (possibly) discontinuous refractivities. The method relies on a hybrid direct/iterative combination of 1)~A differential volumetric formulation (which is based on the use of appropriate Chebyshev differentiation matrices enacting the Laplace operator) and, 2)~A second-kind boundary integral formulation. The approach enjoys low dispersion and high-order accuracy for smooth refractivities, as well as second-order accuracy (while maintaining low dispersion) in the discontinuous refractivity case. The solution approach proceeds by application of Impedance-to-Impedance (ItI) maps to couple the volumetric and boundary discretizations. The volumetric linear algebra solutions are obtained by means of a multifrontal solver, and the coupling with the boundary integral formulation is achieved via an application of the iterative linear-algebra solver GMRES. In particular, the existence and uniqueness theory presented in the present paper provides an affirmative answer to an open question concerning the existence of a uniquely solvable second-kind ItI-based formulation for the overall scattering problem under consideration. Relying on a modestly-demanding scatterer-dependent precomputation stage (requiring in practice a computing cost of the order of $O(N^{\alpha})$ operations, with $\alpha \approx 1.07$, for an $N$-point discretization), together with fast ($O(N)$-cost) single-core runs for each incident field considered, the proposed algorithm can effectively solve scattering problems for large and complex objects possibly containing strong refractivity contrasts and discontinuities.
Considering the infrastructure deployment cost and energy consumption, it is unrealistic to provide seamless coverage of the vehicular network. The presence of uncovered areas tends to hinder the prevalence of the in-vehicle services with large data volume. To this end, we propose a predictive cooperative multi-relay transmission strategy (PreCMTS) for the intermittently connected vehicular networks, fulfilling the 6G vision of semantic and green communications. Specifically, we introduce a task-driven knowledge graph (KG)-assisted semantic communication system, and model the KG into a weighted directed graph from the viewpoint of transmission. Meanwhile, we identify three predictable parameters about the individual vehicles to perform the following anticipatory analysis. Firstly, to facilitate semantic extraction, we derive the closed-form expression of the achievable throughput within the delay requirement. Then, for the extracted semantic representation, we formulate the mutually coupled problems of semantic unit assignment and predictive relay selection as a combinatorial optimization problem, to jointly optimize the energy efficiency and semantic transmission reliability. To find a favorable solution within limited time, we proposed a low-complexity algorithm based on Markov approximation. The promising performance gains of the PreCMTS are demonstrated by the simulations with realistic vehicle traces generated by the SUMO traffic simulator.
Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.