亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Spoken language understanding (SLU) tasks are usually solved by first transcribing an utterance with automatic speech recognition (ASR) and then feeding the output to a text-based model. Recent advances in self-supervised representation learning for speech data have focused on improving the ASR component. We investigate whether representation learning for speech has matured enough to replace ASR in SLU. We compare learned speech features from wav2vec 2.0, state-of-the-art ASR transcripts, and the ground truth text as input for a novel speech-based named entity recognition task, a cardiac arrest detection task on real-world emergency calls and two existing SLU benchmarks. We show that learned speech features are superior to ASR transcripts on three classification tasks. For machine translation, ASR transcripts are still the better choice. We highlight the intrinsic robustness of wav2vec 2.0 representations to out-of-vocabulary words as key to better performance.

相關內容

語音識別是計算機科學和計算語言學的一個跨學科子領域,它發展了一些方法和技術,使計算機可以將口語識別和翻譯成文本。 它也被稱為自動語音識別(ASR),計算機語音識別或語音轉文本(STT)。它整合了計算機科學,語言學和計算機工程領域的知識和研究。

Automatic speech recognition (ASR) is improving ever more at mimicking human speech processing. The functioning of ASR, however, remains to a large extent obfuscated by the complex structure of the deep neural networks (DNNs) they are based on. In this paper, we show how so-called attribution methods, that we import from image recognition and suitably adapt to handle audio data, can help to clarify the working of ASR. Taking DeepSpeech, an end-to-end model for ASR, as a case study, we show how these techniques help to visualize which features of the input are the most influential in determining the output. We focus on three visualization techniques: Layer-wise Relevance Propagation (LRP), Saliency Maps, and Shapley Additive Explanations (SHAP). We compare these methods and discuss potential further applications, such as in the detection of adversarial examples.

Automatic speech recognition (ASR) systems are ubiquitously present in our daily devices. They are vulnerable to adversarial attacks, where manipulated input samples fool the ASR system's recognition. While adversarial examples for various English ASR systems have already been analyzed, there exists no inter-language comparative vulnerability analysis. We compare the attackability of a German and an English ASR system, taking Deepspeech as an example. We investigate if one of the language models is more susceptible to manipulations than the other. The results of our experiments suggest statistically significant differences between English and German in terms of computational effort necessary for the successful generation of adversarial examples. This result encourages further research in language-dependent characteristics in the robustness analysis of ASR.

Code-switching is about dealing with alternative languages in the communication process. Training end-to-end (E2E) automatic speech recognition (ASR) systems for code-switching is known to be a challenging problem because of the lack of data compounded by the increased language context confusion due to the presence of more than one language. In this paper, we propose a language-related attention mechanism to reduce multilingual context confusion for the E2E code-switching ASR model based on the Equivalence Constraint Theory (EC). The linguistic theory requires that any monolingual fragment that occurs in the code-switching sentence must occur in one of the monolingual sentences. It establishes a bridge between monolingual data and code-switching data. By calculating the respective attention of multiple languages, our method can efficiently transfer language knowledge from rich monolingual data. We evaluate our method on ASRU 2019 Mandarin-English code-switching challenge dataset. Compared with the baseline model, the proposed method achieves 11.37% relative mix error rate reduction.

The goal of spoken language understanding (SLU) systems is to determine the meaning of the input speech signal, unlike speech recognition which aims to produce verbatim transcripts. Advances in end-to-end (E2E) speech modeling have made it possible to train solely on semantic entities, which are far cheaper to collect than verbatim transcripts. We focus on this set prediction problem, where entity order is unspecified. Using two classes of E2E models, RNN transducers and attention based encoder-decoders, we show that these models work best when the training entity sequence is arranged in spoken order. To improve E2E SLU models when entity spoken order is unknown, we propose a novel data augmentation technique along with an implicit attention based alignment method to infer the spoken order. F1 scores significantly increased by more than 11% for RNN-T and about 2% for attention based encoder-decoder SLU models, outperforming previously reported results.

The high cost of data acquisition makes Automatic Speech Recognition (ASR) model training problematic for most existing languages, including languages that do not even have a written script, or for which the phone inventories remain unknown. Past works explored multilingual training, transfer learning, as well as zero-shot learning in order to build ASR systems for these low-resource languages. While it has been shown that the pooling of resources from multiple languages is helpful, we have not yet seen a successful application of an ASR model to a language unseen during training. A crucial step in the adaptation of ASR from seen to unseen languages is the creation of the phone inventory of the unseen language. The ultimate goal of our work is to build the phone inventory of a language unseen during training in an unsupervised way without any knowledge about the language. In this paper, we 1) investigate the influence of different factors (i.e., model architecture, phonotactic model, type of speech representation) on phone recognition in an unknown language; 2) provide an analysis of which phones transfer well across languages and which do not in order to understand the limitations of and areas for further improvement for automatic phone inventory creation; and 3) present different methods to build a phone inventory of an unseen language in an unsupervised way. To that end, we conducted mono-, multi-, and crosslingual experiments on a set of 13 phonetically diverse languages and several in-depth analyses. We found a number of universal phone tokens (IPA symbols) that are well-recognized cross-linguistically. Through a detailed analysis of results, we conclude that unique sounds, similar sounds, and tone languages remain a major challenge for phonetic inventory discovery.

We propose Neural-FST Class Language Model (NFCLM) for end-to-end speech recognition, a novel method that combines neural network language models (NNLMs) and finite state transducers (FSTs) in a mathematically consistent framework. Our method utilizes a background NNLM which models generic background text together with a collection of domain-specific entities modeled as individual FSTs. Each output token is generated by a mixture of these components; the mixture weights are estimated with a separately trained neural decider. We show that NFCLM significantly outperforms NNLM by 15.8% relative in terms of Word Error Rate. NFCLM achieves similar performance as traditional NNLM and FST shallow fusion while being less prone to overbiasing and 12 times more compact, making it more suitable for on-device usage.

We propose a novel multi-task pre-training method for Speech Emotion Recognition (SER). We pre-train SER model simultaneously on Automatic Speech Recognition (ASR) and sentiment classification tasks to make the acoustic ASR model more ``emotion aware''. We generate targets for the sentiment classification using text-to-sentiment model trained on publicly available data. Finally, we fine-tune the acoustic ASR on emotion annotated speech data. We evaluated the proposed approach on the MSP-Podcast dataset, where we achieved the best reported concordance correlation coefficient (CCC) of 0.41 for valence prediction.

Detection and recognition of text in natural images are two main problems in the field of computer vision that have a wide variety of applications in analysis of sports videos, autonomous driving, industrial automation, to name a few. They face common challenging problems that are factors in how text is represented and affected by several environmental conditions. The current state-of-the-art scene text detection and/or recognition methods have exploited the witnessed advancement in deep learning architectures and reported a superior accuracy on benchmark datasets when tackling multi-resolution and multi-oriented text. However, there are still several remaining challenges affecting text in the wild images that cause existing methods to underperform due to there models are not able to generalize to unseen data and the insufficient labeled data. Thus, unlike previous surveys in this field, the objectives of this survey are as follows: first, offering the reader not only a review on the recent advancement in scene text detection and recognition, but also presenting the results of conducting extensive experiments using a unified evaluation framework that assesses pre-trained models of the selected methods on challenging cases, and applies the same evaluation criteria on these techniques. Second, identifying several existing challenges for detecting or recognizing text in the wild images, namely, in-plane-rotation, multi-oriented and multi-resolution text, perspective distortion, illumination reflection, partial occlusion, complex fonts, and special characters. Finally, the paper also presents insight into the potential research directions in this field to address some of the mentioned challenges that are still encountering scene text detection and recognition techniques.

End-to-end speech translation poses a heavy burden on the encoder, because it has to transcribe, understand, and learn cross-lingual semantics simultaneously. To obtain a powerful encoder, traditional methods pre-train it on ASR data to capture speech features. However, we argue that pre-training the encoder only through simple speech recognition is not enough and high-level linguistic knowledge should be considered. Inspired by this, we propose a curriculum pre-training method that includes an elementary course for transcription learning and two advanced courses for understanding the utterance and mapping words in two languages. The difficulty of these courses is gradually increasing. Experiments show that our curriculum pre-training method leads to significant improvements on En-De and En-Fr speech translation benchmarks.

Attention-based encoder-decoder architectures such as Listen, Attend, and Spell (LAS), subsume the acoustic, pronunciation and language model components of a traditional automatic speech recognition (ASR) system into a single neural network. In our previous work, we have shown that such architectures are comparable to state-of-the-art ASR systems on dictation tasks, but it was not clear if such architectures would be practical for more challenging tasks such as voice search. In this work, we explore a variety of structural and optimization improvements to our LAS model which significantly improve performance. On the structural side, we show that word piece models can be used instead of graphemes. We introduce a multi-head attention architecture, which offers improvements over the commonly-used single-head attention. On the optimization side, we explore techniques such as synchronous training, scheduled sampling, label smoothing, and minimum word error rate optimization, which are all shown to improve accuracy. We present results with a unidirectional LSTM encoder for streaming recognition. On a 12,500 hour voice search task, we find that the proposed changes improve the WER of the LAS system from 9.2% to 5.6%, while the best conventional system achieve 6.7% WER. We also test both models on a dictation dataset, and our model provide 4.1% WER while the conventional system provides 5% WER.

北京阿比特科技有限公司