亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

High-order accurate summation-by-parts (SBP) finite difference (FD) methods constitute efficient numerical methods for simulating large-scale hyperbolic wave propagation problems. Traditional SBP FD operators that approximate first-order spatial derivatives with central-difference stencils often have spurious unresolved numerical wave-modes in their computed solutions. Recently derived high order accurate upwind SBP operators based upwind FD stencils have the potential to suppress these poisonous spurious wave-modes on marginally resolved computational grids. In this paper, we demonstrate that not all high order upwind SBP FD operators are applicable. Numerical dispersion relation analysis shows that odd-order upwind SBP FD operators also support spurious unresolved high-frequencies on marginally resolved meshes. Meanwhile, even-order upwind SBP FD operators (of order 2, 4, 6) do not support spurious unresolved high frequency wave modes and also have better numerical dispersion properties. We discretise the three space dimensional (3D) elastic wave equation on boundary-conforming curvilinear meshes. Using the energy method we prove that the semi-discrete approximation is stable and energy-conserving. We derive a priori error estimate and prove the convergence of the numerical error. Numerical experiments for the 3D elastic wave equation in complex geometries corroborate the theoretical analysis. Numerical simulations of the 3D elastic wave equation in heterogeneous media with complex non-planar free surface topography are given, including numerical simulations of community developed seismological benchmark problems. Computational results show that even-order upwind SBP FD operators are more efficient, robust and less prone to numerical dispersion errors on marginally resolved meshes when compared to the odd-order upwind and traditional SBP FD operators.

相關內容

The Poisson equation is critical to get a self-consistent solution in plasma fluid simulations used for Hall effect thrusters and streamers discharges. Solving the 2D Poisson equation with zero Dirichlet boundary conditions using a deep neural network is investigated using multiple-scale architectures, defined in terms of number of branches, depth and receptive field. The latter is found critical to correctly capture large topological structures of the field. The investigation of multiple architectures, losses, and hyperparameters provides an optimum network to solve accurately the steady Poisson problem. Generalization to new resolutions and domain sizes is then proposed using a proper scaling of the network. Finally, found neural network solver, called PlasmaNet, is coupled with an unsteady Euler plasma fluid equations solver. The test case corresponds to electron plasma oscillations which is used to assess the accuracy of the neural network solution in a time-dependent simulation. In this time-evolving problem, a physical loss is necessary to produce a stable simulation. PlasmaNet is then benchmarked on meshes with increasing number of nodes, and compared with an existing solver based on a standard linear system algorithm for the Poisson equation. It outperforms the classical plasma solver, up to speedups 700 times faster on large meshes. PlasmaNet is finally tested on a more complex case of discharge propagation involving chemistry and advection. The guidelines established in previous sections are applied to build the CNN to solve the same Poisson equation but in cylindrical coordinates. Results reveal good CNN predictions with significant speedup. These results pave the way to new computational strategies to predict unsteady problems involving a Poisson equation, including configurations with coupled multiphysics interactions such as in plasma flows.

We introduce the multivariate decomposition finite element method for elliptic PDEs with lognormal diffusion coefficient $a=\exp(Z)$ where $Z$ is a Gaussian random field defined by an infinite series expansion $Z(\boldsymbol{y}) = \sum_{j\ge1} y_j\,\phi_j$ with $y_j\sim\mathcal{N}(0,1)$ and a given sequence of functions $\{\phi_j\}_{j\ge1}$. We use the MDFEM to approximate the expected value of a linear functional of the solution of the PDE which is an infinite-dimensional integral over the parameter space. The proposed algorithm uses the multivariate decomposition method (MDM) to compute the infinite-dimensional integral by a decomposition into finite-dimensional integrals, which we resolve using quasi-Monte Carlo (QMC) methods, and for which we use the finite element method (FEM) to solve different instances of the PDE. We develop higher-order quasi-Monte Carlo rules for integration over the finite-dimensional Euclidean space with respect to the Gaussian distribution by use of a truncation strategy. By linear transformations of interlaced polynomial lattice rules from the unit cube to a multivariate box of the Euclidean space we achieve higher-order convergence rates for functions belonging to a class of anchored Gaussian Sobolev spaces, taking into account the truncation error. Under appropriate conditions, the MDFEM achieves higher-order convergence rates in term of error versus cost, i.e., to achieve an accuracy of $O(\epsilon)$ the computational cost is $O(\epsilon^{-1/\lambda-d'/\lambda}) = O(\epsilon^{-(p^*+d'/\tau)/(1-p^*)})$ where $\epsilon^{-1/\lambda}$ and $\epsilon^{-d'/\lambda}$ are respectively the cost of the quasi-Monte Carlo cubature and the finite element approximations, with $d' = d \, (1+\delta')$ for some $\delta' \ge 0$ and $d$ the physical dimension, and $0 < p^* \le (2+d'/\tau)^{-1}$ is a parameter representing the sparsity of $\{\phi_j\}_{j\ge1}$.

Strain smoothing methods such as the smoothed finite element methods (S-FEMs) and the strain-smoothed element~(SSE) method have successfully improved the performance of finite elements, and there have been numerous applications of them in finite element analysis. For the sake of efficient applications to large-scale problems, it is important to develop a mathematically and numerically well-elaborated iterative solver for the strain smoothing methods. In this paper, inspired by the spectral properties of the strain smoothing methods, we propose efficient ways of preconditioning for the methods. First, we analyze the spectrums of the stiffness matrices of the edge-based S-FEM and the SSE method. Then, we propose an improved two-level additive Schwarz preconditioner for the strain smoothing methods by modifying local solvers appropriately. For the sake of convenience of implementation, an alternative form of the preconditioner is also proposed by defining the coarse-scale operation in terms of the standard FEM. We verify our theoretical results through numerical experiments.

We propose a novel algorithmic method for constructing invariant variational schemes of systems of ordinary differential equations that are the Euler-Lagrange equations of a variational principle. The method is based on the invariantization of standard, non-invariant discrete Lagrangian functionals using equivariant moving frames. The invariant variational schemes are given by the Euler-Lagrange equations of the corresponding invariantized discrete Lagrangian functionals. We showcase this general method by constructing invariant variational schemes of ordinary differential equations that preserve variational and divergence symmetries of the associated continuous Lagrangians. Noether's theorem automatically implies that the resulting schemes are exactly conservative. Numerical simulations are carried out and show that these invariant variational schemes outperform standard numerical discretizations.

Mixed-precision algorithms combine low- and high-precision computations in order to benefit from the performance gains of reduced-precision without sacrificing accuracy. In this work, we design mixed-precision Runge-Kutta-Chebyshev (RKC) methods, where high precision is used for accuracy, and low precision for stability. Generally speaking, RKC methods are low-order explicit schemes with a stability domain growing quadratically with the number of function evaluations. For this reason, most of the computational effort is spent on stability rather than accuracy purposes. In this paper, we show that a na\"ive mixed-precision implementation of any Runge-Kutta scheme can harm the convergence order of the method and limit its accuracy, and we introduce a new class of mixed-precision RKC schemes that are instead unaffected by this limiting behaviour. We present three mixed-precision schemes: a first- and a second-order RKC method, and a first-order multirate RKC scheme for multiscale problems. These schemes perform only the few function evaluations needed for accuracy (1 or 2 for first- and second-order methods respectively) in high precision, while the rest are performed in low precision. We prove that while these methods are essentially as cheap as their fully low-precision equivalent, they retain the convergence order of their high-precision counterpart. Indeed, numerical experiments confirm that these schemes are as accurate as the corresponding high-precision method.

We study methods based on reproducing kernel Hilbert spaces for estimating the value function of an infinite-horizon discounted Markov reward process (MRP). We study a regularized form of the kernel least-squares temporal difference (LSTD) estimate; in the population limit of infinite data, it corresponds to the fixed point of a projected Bellman operator defined by the associated reproducing kernel Hilbert space. The estimator itself is obtained by computing the projected fixed point induced by a regularized version of the empirical operator; due to the underlying kernel structure, this reduces to solving a linear system involving kernel matrices. We analyze the error of this estimate in the $L^2(\mu)$-norm, where $\mu$ denotes the stationary distribution of the underlying Markov chain. Our analysis imposes no assumptions on the transition operator of the Markov chain, but rather only conditions on the reward function and population-level kernel LSTD solutions. We use empirical process theory techniques to derive a non-asymptotic upper bound on the error with explicit dependence on the eigenvalues of the associated kernel operator, as well as the instance-dependent variance of the Bellman residual error. In addition, we prove minimax lower bounds over sub-classes of MRPs, which shows that our rate is optimal in terms of the sample size $n$ and the effective horizon $H = (1 - \gamma)^{-1}$. Whereas existing worst-case theory predicts cubic scaling ($H^3$) in the effective horizon, our theory reveals that there is in fact a much wider range of scalings, depending on the kernel, the stationary distribution, and the variance of the Bellman residual error. Notably, it is only parametric and near-parametric problems that can ever achieve the worst-case cubic scaling.

Based on an observation that additive Schwarz methods for general convex optimization can be interpreted as gradient methods, we propose an acceleration scheme for additive Schwarz methods. Adopting acceleration techniques developed for gradient methods such as momentum and adaptive restarting, the convergence rate of additive Schwarz methods is greatly improved. The proposed acceleration scheme does not require any a priori information on the levels of smoothness and sharpness of a target energy functional, so that it can be applied to various convex optimization problems. Numerical results for linear elliptic problems, nonlinear elliptic problems, nonsmooth problems, and nonsharp problems are provided to highlight the superiority and the broad applicability of the proposed scheme.

We propose an accurate data-driven numerical scheme to solve Stochastic Differential Equations (SDEs), by taking large time steps. The SDE discretization is built up by means of a polynomial chaos expansion method, on the basis of accurately determined stochastic collocation (SC) points. By employing an artificial neural network to learn these SC points, we can perform Monte Carlo simulations with large time steps. Error analysis confirms that this data-driven scheme results in accurate SDE solutions in the sense of strong convergence, provided the learning methodology is robust and accurate. With a method variant called the compression-decompression collocation and interpolation technique, we can drastically reduce the number of neural network functions that have to be learned, so that computational speed is enhanced. Numerical experiments confirm a high-quality strong convergence error when using large time steps, and the novel scheme outperforms some classical numerical SDE discretizations. Some applications, here in financial option valuation, are also presented.

The discretisation of boundary integral equations for the scalar Helmholtz equation leads to large dense linear systems. Efficient boundary element methods (BEM), such as the fast multipole method (FMM) and $\Hmat$ based methods, focus on structured low-rank approximations of subblocks in these systems. It is known that the ranks of these subblocks increase linearly with the wavenumber. We explore a data-sparse representation of BEM-matrices valid for a range of frequencies, based on extracting the known phase of the Green's function. Algebraically, this leads to a Hadamard product of a frequency matrix with an $\Hmat$. We show that the frequency dependency of this $\Hmat$ can be determined using a small number of frequency samples, even for geometrically complex three-dimensional scattering obstacles. We describe an efficient construction of the representation by combining adaptive cross approximation with adaptive rational approximation in the continuous frequency dimension. We show that our data-sparse representation allows to efficiently sample the full BEM-matrix at any given frequency, and as such it may be useful as part of an efficient sweeping routine.

The aim of this paper is to provide a solid mathematical discussion of the inverse problem in Magnetorelaxometry Imaging (MRXI), a currently developed technique for quantitative biomedical imaging using magnetic nanoparticles. We provide a detailed discussion of the mathematical modeling of the forward problems including possible ways to activate and measure, leading to a severely ill-posed linear inverse problem. Moreover, we formulate an idealized version of the inverse problem for infinitesimal small activation coils, which allows for a more detailed analysis of uniqueness issues. We propose a variational regularization approach to compute stable approximations of the solution and discuss its discretization and numerical solution. Results on synthetic are presented and improvements to methods used previously in practice are demonstrated. Finally we give an outlook to further questions and in particular experimental design.

北京阿比特科技有限公司