Strain smoothing methods such as the smoothed finite element methods (S-FEMs) and the strain-smoothed element~(SSE) method have successfully improved the performance of finite elements, and there have been numerous applications of them in finite element analysis. For the sake of efficient applications to large-scale problems, it is important to develop a mathematically and numerically well-elaborated iterative solver for the strain smoothing methods. In this paper, inspired by the spectral properties of the strain smoothing methods, we propose efficient ways of preconditioning for the methods. First, we analyze the spectrums of the stiffness matrices of the edge-based S-FEM and the SSE method. Then, we propose an improved two-level additive Schwarz preconditioner for the strain smoothing methods by modifying local solvers appropriately. For the sake of convenience of implementation, an alternative form of the preconditioner is also proposed by defining the coarse-scale operation in terms of the standard FEM. We verify our theoretical results through numerical experiments.
An adapted deflation preconditioner is employed to accelerate the solution of linear systems resulting from the discretization of fracture mechanics problems with well-conditioned extended/generalized finite elements. The deflation space typically used for linear elasticity problems is enriched with additional vectors, accounting for the enrichment functions used, thus effectively removing low frequency components of the error. To further improve performance, deflation is combined, in a multiplicative way, with a block-Jacobi preconditioner, which removes high frequency components of the error as well as linear dependencies introduced by enrichment. The resulting scheme is tested on a series of non-planar crack propagation problems and compared to alternative linear solvers in terms of performance.
Efficient and robust iterative solvers for strong anisotropic elliptic equations are very challenging. In this paper a block preconditioning method is introduced to solve the linear algebraic systems of a class of micro-macro asymptotic-preserving (MMAP) scheme. MMAP method was developed by Degond {\it et al.} in 2012 where the discrete matrix has a $2\times2$ block structure. By the approximate Schur complement a series of block preconditioners are constructed. We first analyze a natural approximate Schur complement that is the coefficient matrix of the original non-AP discretization. However it tends to be singular for very small anisotropic parameters. We then improve it by using more suitable approximation for boundary rows of the exact Schur complement. With these block preconditioners, preconditioned GMRES iterative method is developed to solve the discrete equations. Several numerical tests show that block preconditioning methods can be a robust strategy with respect to grid refinement and the anisotropic strengths.
Regula Falsi, or the method of false position, is a numerical method for finding an approximate solution to f(x) = 0 on a finite interval [a, b], where f is a real-valued continuous function on [a, b] and satisfies f(a)f(b) < 0. Previous studies proved the convergence of this method under certain assumptions about the function f, such as both the first and second derivatives of f do not change the sign on the interval [a, b]. In this paper, we remove those assumptions and prove the convergence of the method for all continuous functions.
Systems of differential-algebraic equations are routinely automatically produced by modeling enviroments such as Maplesim, System Modeler and Modelica. Structural methods are important for reducing the index and obtaining hidden constraints of such daes. This is especially the case for high index non-linear daes. Although such structural analysis is often successful for many dynamic systems, it may fail if the resulting Jacobian is still singular due to symbolic cancellation or numerical degeneration. Existing modified structural methods can handle some cases caused by symbolic cancellation, where assumes the determinant of a Jacobian matrix is identically zero. This paper removes such assumptions and provides numerical methods to analyze such degenerated cases using real algebraic geometry for polynomially nonlinear daes. Firstly, we provide a witness point method, which produces witness points on all components and can help to detect degeneration on all components of polynomially daes. Secondly, we propose an implicit index reduction method which can restore a full rank Jacobian matrix for degenerated dae. Thirdly, based on IIR, we introduce an improved structural method, which can numerically solve degenerated daes on all components. Examples are given to illustrate our methods and show their advantages for degenerated daes.
Existing results for low-rank matrix recovery largely focus on quadratic loss, which enjoys favorable properties such as restricted strong convexity/smoothness (RSC/RSM) and well conditioning over all low rank matrices. However, many interesting problems involve more general, non-quadratic losses, which do not satisfy such properties. For these problems, standard nonconvex approaches such as rank-constrained projected gradient descent (a.k.a. iterative hard thresholding) and Burer-Monteiro factorization could have poor empirical performance, and there is no satisfactory theory guaranteeing global and fast convergence for these algorithms. In this paper, we show that a critical component in provable low-rank recovery with non-quadratic loss is a regularity projection oracle. This oracle restricts iterates to low-rank matrices within an appropriate bounded set, over which the loss function is well behaved and satisfies a set of approximate RSC/RSM conditions. Accordingly, we analyze an (averaged) projected gradient method equipped with such an oracle, and prove that it converges globally and linearly. Our results apply to a wide range of non-quadratic low-rank estimation problems including one bit matrix sensing/completion, individualized rank aggregation, and more broadly generalized linear models with rank constraints.
The statistical finite element method (StatFEM) is an emerging probabilistic method that allows observations of a physical system to be synthesised with the numerical solution of a PDE intended to describe it in a coherent statistical framework, to compensate for model error. This work presents a new theoretical analysis of the statistical finite element method demonstrating that it has similar convergence properties to the finite element method on which it is based. Our results constitute a bound on the Wasserstein-2 distance between the ideal prior and posterior and the StatFEM approximation thereof, and show that this distance converges at the same mesh-dependent rate as finite element solutions converge to the true solution. Several numerical examples are presented to demonstrate our theory, including an example which test the robustness of StatFEM when extended to nonlinear quantities of interest.
We propose a stochastic collocation method based on the piecewise constant interpolation on the probability space combined with a finite volume method to solve the compressible Navier-Stokes system at the nodal points. We show convergence of numerical solutions to a statistical solution of the Navier-Stokes system on condition that the numerical solutions are bounded in probability. The analysis uses the stochastic compactness method based on the Skorokhod/Jakubowski representation theorem and the criterion of convergence in probability due to Gy\"ongy and Krylov.
In this paper, we propose a practical online method for solving a class of distributionally robust optimization (DRO) with non-convex objectives, which has important applications in machine learning for improving the robustness of neural networks. In the literature, most methods for solving DRO are based on stochastic primal-dual methods. However, primal-dual methods for DRO suffer from several drawbacks: (1) manipulating a high-dimensional dual variable corresponding to the size of data is time expensive; (2) they are not friendly to online learning where data is coming sequentially. To address these issues, we consider a class of DRO with an KL divergence regularization on the dual variables, transform the min-max problem into a compositional minimization problem, and propose practical duality-free online stochastic methods without requiring a large mini-batch size. We establish the state-of-the-art complexities of the proposed methods with and without a Polyak-\L ojasiewicz (PL) condition of the objective. Empirical studies on large-scale deep learning tasks (i) demonstrate that our method can speed up the training by more than 2 times than baseline methods and save days of training time on a large-scale dataset with $\sim$ 265K images, and (ii) verify the supreme performance of DRO over Empirical Risk Minimization (ERM) on imbalanced datasets. Of independent interest, the proposed method can be also used for solving a family of stochastic compositional problems with state-of-the-art complexities.
In this paper, we study an initial-boundary value problem of Kirchhoff type involving memory term for non-homogeneous materials. The purpose of this research is threefold. First, we prove the existence and uniqueness of weak solutions to the problem using the Galerkin method. Second, to obtain numerical solutions efficiently, we develop a L1 type backward Euler-Galerkin FEM, which is $O(h+k^{2-\alpha})$ accurate, where $\alpha~ (0<\alpha<1)$ is the order of fractional time derivative, $h$ and $k$ are the discretization parameters for space and time directions, respectively. Next, to achieve the optimal rate of convergence in time, we propose a fractional Crank-Nicolson-Galerkin FEM based on L2-1$_{\sigma}$ scheme. We prove that the numerical solutions of this scheme converge to the exact solution with accuracy $O(h+k^{2})$. We also derive a priori bounds on numerical solutions for the proposed schemes. Finally, some numerical experiments are conducted to validate our theoretical claims.
This paper investigates the problem of online statistical inference of model parameters in stochastic optimization problems via the Kiefer-Wolfowitz algorithm with random search directions. We first present the asymptotic distribution for the Polyak-Ruppert-averaging type Kiefer-Wolfowitz (AKW) estimators, whose asymptotic covariance matrices depend on the function-value query complexity and the distribution of search directions. The distributional result reflects the trade-off between statistical efficiency and function query complexity. We further analyze the choices of random search directions to minimize the asymptotic covariance matrix, and conclude that the optimal search direction depends on the optimality criteria with respect to different summary statistics of the Fisher information matrix. Based on the asymptotic distribution result, we conduct online statistical inference by providing two construction procedures of valid confidence intervals. We provide numerical experiments verifying our theoretical results with the practical effectiveness of the procedures.