亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Physics-informed neural networks (PINNs) are a popular and powerful approach for solving problems involving differential equations, yet they often struggle to solve problems with high frequency and/or multi-scale solutions. Finite basis physics-informed neural networks (FBPINNs) improve the performance of PINNs in this regime by combining them with an overlapping domain decomposition approach. In this paper, the FBPINN approach is extended by adding multiple levels of domain decompositions to their solution ansatz, inspired by classical multilevel Schwarz domain decomposition methods (DDMs). Furthermore, analogous to typical tests for classical DDMs, strong and weak scaling studies designed for measuring how the accuracy of PINNs and FBPINNs behaves with respect to computational effort and solution complexity are carried out. Our numerical results show that the proposed multilevel FBPINNs consistently and significantly outperform PINNs across a range of problems with high frequency and multi-scale solutions. Furthermore, as expected in classical DDMs, we show that multilevel FBPINNs improve the scalability of FBPINNs to large numbers of subdomains by aiding global communication between subdomains.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

We propose a novel stochastic algorithm that randomly samples entire rows and columns of the matrix as a way to approximate an arbitrary matrix function. This contrasts with the "classical" Monte Carlo method which only works with one entry at a time, resulting in a significant better convergence rate than the "classical" approach. To assess the applicability of our method, we compute the subgraph centrality and total communicability of several large networks. In all benchmarks analyzed so far, the performance of our method was significantly superior to the competition, being able to scale up to 64 CPU cores with a remarkable efficiency.

Physics-informed neural networks (PINNs) have emerged as a powerful tool for solving inverse problems, especially in cases where no complete information about the system is known and scatter measurements are available. This is especially useful in hemodynamics since the boundary information is often difficult to model, and high-quality blood flow measurements are generally hard to obtain. In this work, we use the PINNs methodology for estimating reduced-order model parameters and the full velocity field from scatter 2D noisy measurements in the ascending aorta. The results show stable and accurate parameter estimations when using the method with simulated data, while the velocity reconstruction shows dependence on the measurement quality and the flow pattern complexity. The method allows for solving clinical-relevant inverse problems in hemodynamics and complex coupled physical systems.

We propose a many-sorted modal logic for reasoning about knowledge in multi-agent systems. Our logic introduces a clear distinction between participating agents and the environment. This allows to express local properties of agents and global properties of worlds in a uniform way, as well as to talk about the presence or absence of agents in a world. The logic subsumes the standard epistemic logic and is a conservative extension of it. The semantics is given in chromatic hypergraphs, a generalization of chromatic simplicial complexes, which were recently used to model knowledge in distributed systems. We show that the logic is sound and complete with respect to the intended semantics. We also show a further connection of chromatic hypergraphs with neighborhood frames.

Learning distance functions between complex objects, such as the Wasserstein distance to compare point sets, is a common goal in machine learning applications. However, functions on such complex objects (e.g., point sets and graphs) are often required to be invariant to a wide variety of group actions e.g. permutation or rigid transformation. Therefore, continuous and symmetric product functions (such as distance functions) on such complex objects must also be invariant to the product of such group actions. We call these functions symmetric and factor-wise group invariant (or SFGI functions in short). In this paper, we first present a general neural network architecture for approximating SFGI functions. The main contribution of this paper combines this general neural network with a sketching idea to develop a specific and efficient neural network which can approximate the $p$-th Wasserstein distance between point sets. Very importantly, the required model complexity is independent of the sizes of input point sets. On the theoretical front, to the best of our knowledge, this is the first result showing that there exists a neural network with the capacity to approximate Wasserstein distance with bounded model complexity. Our work provides an interesting integration of sketching ideas for geometric problems with universal approximation of symmetric functions. On the empirical front, we present a range of results showing that our newly proposed neural network architecture performs comparatively or better than other models (including a SOTA Siamese Autoencoder based approach). In particular, our neural network generalizes significantly better and trains much faster than the SOTA Siamese AE. Finally, this line of investigation could be useful in exploring effective neural network design for solving a broad range of geometric optimization problems (e.g., $k$-means in a metric space).

Network control theory can be used to model how one should steer the brain between different states by driving a specific region with an input. The needed energy to control a network is often used to quantify its controllability, and controlling brain networks requires diverse energy depending on the selected input region. We use the theory of how input node placement affects the longest control chain (LCC) in the controllability of brain networks to study the role of the architecture of white matter fibers in the required control energy. We show that the energy needed to control human brain networks is related to the LCC, i.e., the longest distance between the input region and other regions in the network. We indicate that regions that control brain networks with lower energy have small LCCs. These regions align with areas that can steer the brain around the state space smoothly. By contrast, regions that need higher energy to move the brain toward different target states have larger LCCs. We also investigate the role of the number of paths between regions in the control energy. Our results show that the more paths between regions, the lower cost needed to control brain networks. We evaluate the number of paths by counting specific motifs in brain networks since determining all paths in graphs is a difficult problem.

We present a new method for constructing valid covariance functions of Gaussian processes over irregular nonconvex spatial domains such as water bodies, where the geodesic distance agrees with the Euclidean distance only for some pairs of points. Standard covariance functions based on geodesic distances are not positive definite on such domains. Using a visibility graph on the domain, we use the graphical method of "covariance selection" to propose a class of covariance functions that preserve Euclidean-based covariances between points that are connected through the domain. The proposed method preserves the partially Euclidean nature of the intrinsic geometry on the domain while maintaining validity (positive definiteness) and marginal stationarity over the entire parameter space, properties which are not always fulfilled by existing approaches to construct covariance functions on nonconvex domains. We provide useful approximations to improve computational efficiency, resulting in a scalable algorithm. We evaluate the performance of competing state-of-the-art methods using simulation studies on a contrived nonconvex domain. The method is applied to data regarding acidity levels in the Chesapeake Bay, showing its potential for ecological monitoring in real-world spatial applications on irregular domains.

The proliferation of data generation has spurred advancements in functional data analysis. With the ability to analyze multiple variables simultaneously, the demand for working with multivariate functional data has increased. This study proposes a novel formulation of the epigraph and hypograph indexes, as well as their generalized expressions, specifically tailored for the multivariate functional context. These definitions take into account the interrelations between components. Furthermore, the proposed indexes are employed to cluster multivariate functional data. In the clustering process, the indexes are applied to both the data and their first and second derivatives. This generates a reduced-dimension dataset from the original multivariate functional data, enabling the application of well-established multivariate clustering techniques that have been extensively studied in the literature. This methodology has been tested through simulated and real datasets, performing comparative analyses against state-of-the-art to assess its performance.

The marginal structure quantile model (MSQM) provides a unique lens to understand the causal effect of a time-varying treatment on the full distribution of potential outcomes. Under the semiparametric framework, we derive the efficiency influence function for the MSQM, from which a doubly robust estimator is proposed. We show that the doubly robust estimator is consistent if either of the models associated with treatment assignment or the potential outcome distributions is correctly specified, and is semiparametrically efficient if both models are correct. We also develop a novel sensitivity analysis framework for the assumption of no unmeasured time-varying confounding.

We propose a new concept of codivergence, which quantifies the similarity between two probability measures $P_1, P_2$ relative to a reference probability measure $P_0$. In the neighborhood of the reference measure $P_0$, a codivergence behaves like an inner product between the measures $P_1 - P_0$ and $P_2 - P_0$. Codivergences of covariance-type and correlation-type are introduced and studied with a focus on two specific correlation-type codivergences, the $\chi^2$-codivergence and the Hellinger codivergence. We derive explicit expressions for several common parametric families of probability distributions. For a codivergence, we introduce moreover the divergence matrix as an analogue of the Gram matrix. It is shown that the $\chi^2$-divergence matrix satisfies a data-processing inequality.

We consider parametrized linear-quadratic optimal control problems and provide their online-efficient solutions by combining greedy reduced basis methods and machine learning algorithms. To this end, we first extend the greedy control algorithm, which builds a reduced basis for the manifold of optimal final time adjoint states, to the setting where the objective functional consists of a penalty term measuring the deviation from a desired state and a term describing the control energy. Afterwards, we apply machine learning surrogates to accelerate the online evaluation of the reduced model. The error estimates proven for the greedy procedure are further transferred to the machine learning models and thus allow for efficient a posteriori error certification. We discuss the computational costs of all considered methods in detail and show by means of two numerical examples the tremendous potential of the proposed methodology.

北京阿比特科技有限公司