亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents a multi-dimensional view of AI's role in learning and education, emphasizing the intricate interplay between AI, analytics, and the learning processes. Here, I challenge the prevalent narrow conceptualisation of AI as tools, as exemplified in generative AI tools, and argue for the importance of alternative conceptualisations of AI for achieving human-AI hybrid intelligence. I highlight the differences between human intelligence and artificial information processing, the importance of hybrid human-AI systems to extend human cognition, and posit that AI can also serve as an instrument for understanding human learning. Early learning sciences and AI in Education research (AIED), which saw AI as an analogy for human intelligence, have diverged from this perspective, prompting a need to rekindle this connection. The paper presents three unique conceptualisations of AI: the externalization of human cognition, the internalization of AI models to influence human mental models, and the extension of human cognition via tightly coupled human-AI hybrid intelligence systems. Examples from current research and practice are examined as instances of the three conceptualisations in education, highlighting the potential value and limitations of each conceptualisation for education, as well as the perils of overemphasis on externalising human cognition. The paper concludes with advocacy for a broader approach to AIED that goes beyond considerations on the design and development of AI, but also includes educating people about AI and innovating educational systems to remain relevant in an AI-ubiquitous world.

相關內容

Cognition:Cognition:International Journal of Cognitive Science Explanation:認知:國際認知科學雜志。 Publisher:Elsevier。 SIT:

With the rapid advancements of large language models (LLMs), information retrieval (IR) systems, such as search engines and recommender systems, have undergone a significant paradigm shift. This evolution, while heralding new opportunities, introduces emerging challenges, particularly in terms of biases and unfairness, which may threaten the information ecosystem. In this paper, we present a comprehensive survey of existing works on emerging and pressing bias and unfairness issues in IR systems when the integration of LLMs. We first unify bias and unfairness issues as distribution mismatch problems, providing a groundwork for categorizing various mitigation strategies through distribution alignment. Subsequently, we systematically delve into the specific bias and unfairness issues arising from three critical stages of LLMs integration into IR systems: data collection, model development, and result evaluation. In doing so, we meticulously review and analyze recent literature, focusing on the definitions, characteristics, and corresponding mitigation strategies associated with these issues. Finally, we identify and highlight some open problems and challenges for future work, aiming to inspire researchers and stakeholders in the IR field and beyond to better understand and mitigate bias and unfairness issues of IR in this LLM era. We also consistently maintain a GitHub repository for the relevant papers and resources in this rising direction at //github.com/KID-22/LLM-IR-Bias-Fairness-Survey.

This study examines the impact of Generative Artificial Intelligence (GenAI) on academic research, focusing on its application to qualitative and quantitative data analysis. As GenAI tools evolve rapidly, they offer new possibilities for enhancing research productivity and democratising complex analytical processes. However, their integration into academic practice raises significant questions regarding research integrity and security, authorship, and the changing nature of scholarly work. Through an examination of current capabilities and potential future applications, this study provides insights into how researchers may utilise GenAI tools responsibly and ethically. We present case studies that demonstrate the application of GenAI in various research methodologies, discuss the challenges of replicability and consistency in AI-assisted research, and consider the ethical implications of increased AI integration in academia. This study explores both qualitative and quantitative applications of GenAI, highlighting tools for transcription, coding, thematic analysis, visual analytics, and statistical analysis. By addressing these issues, we aim to contribute to the ongoing discourse on the role of AI in shaping the future of academic research and provide guidance for researchers exploring the rapidly evolving landscape of AI-assisted research tools and research.

This paper presents a novel multi-channel speech enhancement approach, FoVNet, that enables highly efficient speech enhancement within a configurable field of view (FoV) of a smart-glasses user without needing specific target-talker(s) directions. It advances over prior works by enhancing all speakers within any given FoV, with a hybrid signal processing and deep learning approach designed with high computational efficiency. The neural network component is designed with ultra-low computation (about 50 MMACS). A multi-channel Wiener filter and a post-processing module are further used to improve perceptual quality. We evaluate our algorithm with a microphone array on smart glasses, providing a configurable, efficient solution for augmented hearing on energy-constrained devices. FoVNet excels in both computational efficiency and speech quality across multiple scenarios, making it a promising solution for smart glasses applications.

This paper presents UniPortrait, an innovative human image personalization framework that unifies single- and multi-ID customization with high face fidelity, extensive facial editability, free-form input description, and diverse layout generation. UniPortrait consists of only two plug-and-play modules: an ID embedding module and an ID routing module. The ID embedding module extracts versatile editable facial features with a decoupling strategy for each ID and embeds them into the context space of diffusion models. The ID routing module then combines and distributes these embeddings adaptively to their respective regions within the synthesized image, achieving the customization of single and multiple IDs. With a carefully designed two-stage training scheme, UniPortrait achieves superior performance in both single- and multi-ID customization. Quantitative and qualitative experiments demonstrate the advantages of our method over existing approaches as well as its good scalability, e.g., the universal compatibility with existing generative control tools. The project page is at //aigcdesigngroup.github.io/UniPortrait-Page/ .

Contrastive learning is a significant paradigm in graph self-supervised learning. However, it requires negative samples to prevent model collapse and learn discriminative representations. These negative samples inevitably lead to heavy computation, memory overhead and class collision, compromising the representation learning. Recent studies present that methods obviating negative samples can attain competitive performance and scalability enhancements, exemplified by bootstrapped graph latents (BGRL). However, BGRL neglects the inherent graph homophily, which provides valuable insights into underlying positive pairs. Our motivation arises from the observation that subtly introducing a few ground-truth positive pairs significantly improves BGRL. Although we can't obtain ground-truth positive pairs without labels under the self-supervised setting, edges in the graph can reflect noisy positive pairs, i.e., neighboring nodes often share the same label. Therefore, we propose to expand the positive pair set with node-neighbor pairs. Subsequently, we introduce a cross-attention module to predict the supportiveness score of a neighbor with respect to the anchor node. This score quantifies the positive support from each neighboring node, and is encoded into the training objective. Consequently, our method mitigates class collision from negative and noisy positive samples, concurrently enhancing intra-class compactness. Extensive experiments are conducted on five benchmark datasets and three downstream task node classification, node clustering, and node similarity search. The results demonstrate that our method generates node representations with enhanced intra-class compactness and achieves state-of-the-art performance.

This research examines the use of Large Language Models (LLMs) in predicting time series, with a specific focus on the LLMTIME model. Despite the established effectiveness of LLMs in tasks such as text generation, language translation, and sentiment analysis, this study highlights the key challenges that large language models encounter in the context of time series prediction. We assess the performance of LLMTIME across multiple datasets and introduce classical almost periodic functions as time series to gauge its effectiveness. The empirical results indicate that while large language models can perform well in zero-shot forecasting for certain datasets, their predictive accuracy diminishes notably when confronted with diverse time series data and traditional signals. The primary finding of this study is that the predictive capacity of LLMTIME, similar to other LLMs, significantly deteriorates when dealing with time series data that contain both periodic and trend components, as well as when the signal comprises complex frequency components.

Analyzing large sets of visual media remains a challenging task, particularly in mixed-method studies dealing with problematic information and human subjects. Using AI tools in such analyses risks reifying and exacerbating biases, as well as untenable computational and cost limitations. As such, we turn to adopting geometric computer graphics and vision methods towards analyzing a large set of images from a problematic information campaign, in conjunction with human-in-the-loop qualitative analysis. We illustrate an effective case of this approach with the implementation of color quantization towards analyzing online hate image at the US-Mexico border, along with a historicist trace of the history of color quantization and skin tone scales, to inform our usage and reclamation of these methodologies from their racist origins. To that end, we scaffold motivations and the need for more researchers to consider the advantages and risks of reclaiming such methodologies in their own work, situated in our case study.

We propose a new graph-based framework to reveal relationships among motivations, emotions and actions explicitly given natural language texts. A directed acyclic graph is designed to describe human's nature. Nurture beliefs are incorporated to connect outside events and the human's nature graph. No annotation resources are required due to the power of large language models. Amazon Fine Foods Reviews dataset is used as corpus and food-related motivations are focused. Totally 92,990 relationship graphs are generated, of which 63% make logical sense. We make further analysis to investigate error types for optimization direction in future research.

We introduce DeepNash, an autonomous agent capable of learning to play the imperfect information game Stratego from scratch, up to a human expert level. Stratego is one of the few iconic board games that Artificial Intelligence (AI) has not yet mastered. This popular game has an enormous game tree on the order of $10^{535}$ nodes, i.e., $10^{175}$ times larger than that of Go. It has the additional complexity of requiring decision-making under imperfect information, similar to Texas hold'em poker, which has a significantly smaller game tree (on the order of $10^{164}$ nodes). Decisions in Stratego are made over a large number of discrete actions with no obvious link between action and outcome. Episodes are long, with often hundreds of moves before a player wins, and situations in Stratego can not easily be broken down into manageably-sized sub-problems as in poker. For these reasons, Stratego has been a grand challenge for the field of AI for decades, and existing AI methods barely reach an amateur level of play. DeepNash uses a game-theoretic, model-free deep reinforcement learning method, without search, that learns to master Stratego via self-play. The Regularised Nash Dynamics (R-NaD) algorithm, a key component of DeepNash, converges to an approximate Nash equilibrium, instead of 'cycling' around it, by directly modifying the underlying multi-agent learning dynamics. DeepNash beats existing state-of-the-art AI methods in Stratego and achieved a yearly (2022) and all-time top-3 rank on the Gravon games platform, competing with human expert players.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

北京阿比特科技有限公司