Recently, convolutional neural networks (CNNs) have been widely used in sound event detection (SED). However, traditional convolution is deficient in learning time-frequency domain representation of different sound events. To address this issue, we propose multi-dimensional frequency dynamic convolution (MFDConv), a new design that endows convolutional kernels with frequency-adaptive dynamic properties along multiple dimensions. MFDConv utilizes a novel multi-dimensional attention mechanism with a parallel strategy to learn complementary frequency-adaptive attentions, which substantially strengthen the feature extraction ability of convolutional kernels. Moreover, in order to promote the performance of mean teacher, we propose the confident mean teacher to increase the accuracy of pseudo-labels from the teacher and train the student with high confidence labels. Experimental results show that the proposed methods achieve 0.470 and 0.692 of PSDS1 and PSDS2 on the DESED real validation dataset.
Power lines pose a significant safety threat to unmanned aerial vehicles (UAVs) operating at low altitudes. However, detecting power lines in aerial images is challenging due to the small size of the foreground data (i.e., power lines) and the abundance of background information. To address this challenge, we propose DUFormer, a semantic segmentation algorithm designed specifically for power line detection in aerial images. We assume that performing sufficient feature extraction with a convolutional neural network (CNN) that has a strong inductive bias is beneficial for training an efficient Transformer model. To this end, we propose a heavy token encoder responsible for overlapping feature re-mining and tokenization. The encoder comprises a pyramid CNN feature extraction module and a power line feature enhancement module. Following sufficient feature extraction for power lines, the feature fusion is carried out, and then the Transformer block is used for global modeling. The final segmentation result is obtained by fusing local and global features in the decode head. Additionally, we demonstrate the significance of the joint multi-weight loss function in power line segmentation. The experimental results demonstrate that our proposed method achieves the state-of-the-art performance in power line segmentation on the publicly available TTPLA dataset.
Fully supervised log anomaly detection methods suffer the heavy burden of annotating massive unlabeled log data. Recently, many semi-supervised methods have been proposed to reduce annotation costs with the help of parsed templates. However, these methods consider each keyword independently, which disregards the correlation between keywords and the contextual relationships among log sequences. In this paper, we propose a novel weakly supervised log anomaly detection framework, named LogLG, to explore the semantic connections among keywords from sequences. Specifically, we design an end-to-end iterative process, where the keywords of unlabeled logs are first extracted to construct a log-event graph. Then, we build a subgraph annotator to generate pseudo labels for unlabeled log sequences. To ameliorate the annotation quality, we adopt a self-supervised task to pre-train a subgraph annotator. After that, a detection model is trained with the generated pseudo labels. Conditioned on the classification results, we re-extract the keywords from the log sequences and update the log-event graph for the next iteration. Experiments on five benchmarks validate the effectiveness of LogLG for detecting anomalies on unlabeled log data and demonstrate that LogLG, as the state-of-the-art weakly supervised method, achieves significant performance improvements compared to existing methods.
Audio-based classification techniques on body sounds have long been studied to support diagnostic decisions, particularly in pulmonary diseases. In response to the urgency of the COVID-19 pandemic, a growing number of models are developed to identify COVID-19 patients based on acoustic input. Most models focus on cough because the dry cough is the best-known symptom of COVID-19. However, other body sounds, such as breath and speech, have also been revealed to correlate with COVID-19 as well. In this work, rather than relying on a specific body sound, we propose Fused Audio Instance and Representation for COVID-19 Detection (FAIR4Cov). It relies on constructing a joint feature vector obtained from a plurality of body sounds in waveform and spectrogram representation. The core component of FAIR4Cov is a self-attention fusion unit that is trained to establish the relation of multiple body sounds and audio representations and integrate it into a compact feature vector. We set up our experiments on different combinations of body sounds using only waveform, spectrogram, and a joint representation of waveform and spectrogram. Our findings show that the use of self-attention to combine extracted features from cough, breath, and speech sounds leads to the best performance with an Area Under the Receiver Operating Characteristic Curve (AUC) score of 0.8658, a sensitivity of 0.8057, and a specificity of 0.7958. This AUC is 0.0227 higher than the one of the models trained on spectrograms only and 0.0847 higher than the one of the models trained on waveforms only. The results demonstrate that the combination of spectrogram with waveform representation helps to enrich the extracted features and outperforms the models with single representation.
Existing contrastive learning methods for anomalous sound detection refine the audio representation of each audio sample by using the contrast between the samples' augmentations (e.g., with time or frequency masking). However, they might be biased by the augmented data, due to the lack of physical properties of machine sound, thereby limiting the detection performance. This paper uses contrastive learning to refine audio representations for each machine ID, rather than for each audio sample. The proposed two-stage method uses contrastive learning to pretrain the audio representation model by incorporating machine ID and a self-supervised ID classifier to fine-tune the learnt model, while enhancing the relation between audio features from the same ID. Experiments show that our method outperforms the state-of-the-art methods using contrastive learning or self-supervised classification in overall anomaly detection performance and stability on DCASE 2020 Challenge Task2 dataset.
Pathological image analysis is an important process for detecting abnormalities such as cancer from cell images. However, since the image size is generally very large, the cost of providing detailed annotations is high, which makes it difficult to apply machine learning techniques. One way to improve the performance of identifying abnormalities while keeping the annotation cost low is to use only labels for each slide, or to use information from another dataset that has already been labeled. However, such weak supervisory information often does not provide sufficient performance. In this paper, we proposed a new task setting to improve the classification performance of the target dataset without increasing annotation costs. And to solve this problem, we propose a pipeline that uses multiple instance learning (MIL) and domain adaptation (DA) methods. Furthermore, in order to combine the supervisory information of both methods effectively, we propose a method to create pseudo-labels with high confidence. We conducted experiments on the pathological image dataset we created for this study and showed that the proposed method significantly improves the classification performance compared to existing methods.
Tools to generate high quality synthetic speech signal that is perceptually indistinguishable from speech recorded from human speakers are easily available. Several approaches have been proposed for detecting synthetic speech. Many of these approaches use deep learning methods as a black box without providing reasoning for the decisions they make. This limits the interpretability of these approaches. In this paper, we propose Disentangled Spectrogram Variational Auto Encoder (DSVAE) which is a two staged trained variational autoencoder that processes spectrograms of speech using disentangled representation learning to generate interpretable representations of a speech signal for detecting synthetic speech. DSVAE also creates an activation map to highlight the spectrogram regions that discriminate synthetic and bona fide human speech signals. We evaluated the representations obtained from DSVAE using the ASVspoof2019 dataset. Our experimental results show high accuracy (>98%) on detecting synthetic speech from 6 known and 10 out of 11 unknown speech synthesizers. We also visualize the representation obtained from DSVAE for 17 different speech synthesizers and verify that they are indeed interpretable and discriminate bona fide and synthetic speech from each of the synthesizers.
Graphs are used widely to model complex systems, and detecting anomalies in a graph is an important task in the analysis of complex systems. Graph anomalies are patterns in a graph that do not conform to normal patterns expected of the attributes and/or structures of the graph. In recent years, graph neural networks (GNNs) have been studied extensively and have successfully performed difficult machine learning tasks in node classification, link prediction, and graph classification thanks to the highly expressive capability via message passing in effectively learning graph representations. To solve the graph anomaly detection problem, GNN-based methods leverage information about the graph attributes (or features) and/or structures to learn to score anomalies appropriately. In this survey, we review the recent advances made in detecting graph anomalies using GNN models. Specifically, we summarize GNN-based methods according to the graph type (i.e., static and dynamic), the anomaly type (i.e., node, edge, subgraph, and whole graph), and the network architecture (e.g., graph autoencoder, graph convolutional network). To the best of our knowledge, this survey is the first comprehensive review of graph anomaly detection methods based on GNNs.
The key challenge of image manipulation detection is how to learn generalizable features that are sensitive to manipulations in novel data, whilst specific to prevent false alarms on authentic images. Current research emphasizes the sensitivity, with the specificity overlooked. In this paper we address both aspects by multi-view feature learning and multi-scale supervision. By exploiting noise distribution and boundary artifact surrounding tampered regions, the former aims to learn semantic-agnostic and thus more generalizable features. The latter allows us to learn from authentic images which are nontrivial to be taken into account by current semantic segmentation network based methods. Our thoughts are realized by a new network which we term MVSS-Net. Extensive experiments on five benchmark sets justify the viability of MVSS-Net for both pixel-level and image-level manipulation detection.
Video anomaly detection under weak labels is formulated as a typical multiple-instance learning problem in previous works. In this paper, we provide a new perspective, i.e., a supervised learning task under noisy labels. In such a viewpoint, as long as cleaning away label noise, we can directly apply fully supervised action classifiers to weakly supervised anomaly detection, and take maximum advantage of these well-developed classifiers. For this purpose, we devise a graph convolutional network to correct noisy labels. Based upon feature similarity and temporal consistency, our network propagates supervisory signals from high-confidence snippets to low-confidence ones. In this manner, the network is capable of providing cleaned supervision for action classifiers. During the test phase, we only need to obtain snippet-wise predictions from the action classifier without any extra post-processing. Extensive experiments on 3 datasets at different scales with 2 types of action classifiers demonstrate the efficacy of our method. Remarkably, we obtain the frame-level AUC score of 82.12% on UCF-Crime.
Deep neural network architectures have traditionally been designed and explored with human expertise in a long-lasting trial-and-error process. This process requires huge amount of time, expertise, and resources. To address this tedious problem, we propose a novel algorithm to optimally find hyperparameters of a deep network architecture automatically. We specifically focus on designing neural architectures for medical image segmentation task. Our proposed method is based on a policy gradient reinforcement learning for which the reward function is assigned a segmentation evaluation utility (i.e., dice index). We show the efficacy of the proposed method with its low computational cost in comparison with the state-of-the-art medical image segmentation networks. We also present a new architecture design, a densely connected encoder-decoder CNN, as a strong baseline architecture to apply the proposed hyperparameter search algorithm. We apply the proposed algorithm to each layer of the baseline architectures. As an application, we train the proposed system on cine cardiac MR images from Automated Cardiac Diagnosis Challenge (ACDC) MICCAI 2017. Starting from a baseline segmentation architecture, the resulting network architecture obtains the state-of-the-art results in accuracy without performing any trial-and-error based architecture design approaches or close supervision of the hyperparameters changes.