亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study the problem of finding incorrect property accesses in JavaScript where objects do not have a fixed layout, and properties (including methods) can be added, overwritten, and deleted freely throughout the lifetime of an object. Since referencing a non-existent property is not an error in JavaScript, accidental accesses to non-existent properties (caused, perhaps, by a typo or by a misunderstanding of API documentation) can go undetected without thorough testing, and may manifest far from the source of the problem. We propose a two-phase approach for detecting property access errors based on the observation that, in practice, most property accesses will be correct. First a large number of property access patterns is collected from an extensive corpus of real-world JavaScript code, and a statistical analysis is performed to identify anomalous usage patterns. Specific instances of these patterns may not be bugs (due, e.g., dynamic type checks), so a local data-flow analysis filters out instances of anomalous property accesses that are safe and leaves only those likely to be actual bugs. We experimentally validate our approach, showing that on a set of 100 concrete instances of anomalous property accesses, the approach achieves a precision of 82% with a recall of 90%, making it suitable for practical use. We also conducted an experiment to determine how effective the popular VSCode code completion feature is at suggesting object properties, and found that, while it never suggested an incorrect property (precision of 100%), it failed to suggest the correct property in 62 out of 80 cases (recall of 22.5%). This shows that developers cannot rely on VSCode's code completion alone to ensure that all property accesses are valid.

相關內容

The use of Air traffic management (ATM) simulators for planing and operations can be challenging due to their modelling complexity. This paper presents XALM (eXplainable Active Learning Metamodel), a three-step framework integrating active learning and SHAP (SHapley Additive exPlanations) values into simulation metamodels for supporting ATM decision-making. XALM efficiently uncovers hidden relationships among input and output variables in ATM simulators, those usually of interest in policy analysis. Our experiments show XALM's predictive performance comparable to the XGBoost metamodel with fewer simulations. Additionally, XALM exhibits superior explanatory capabilities compared to non-active learning metamodels. Using the `Mercury' (flight and passenger) ATM simulator, XALM is applied to a real-world scenario in Paris Charles de Gaulle airport, extending an arrival manager's range and scope by analysing six variables. This case study illustrates XALM's effectiveness in enhancing simulation interpretability and understanding variable interactions. By addressing computational challenges and improving explainability, XALM complements traditional simulation-based analyses. Lastly, we discuss two practical approaches for reducing the computational burden of the metamodelling further: we introduce a stopping criterion for active learning based on the inherent uncertainty of the metamodel, and we show how the simulations used for the metamodel can be reused across key performance indicators, thus decreasing the overall number of simulations needed.

This paper addresses the problem of providing robust estimators under a functional logistic regression model. Logistic regression is a popular tool in classification problems with two populations. As in functional linear regression, regularization tools are needed to compute estimators for the functional slope. The traditional methods are based on dimension reduction or penalization combined with maximum likelihood or quasi--likelihood techniques and for that reason, they may be affected by misclassified points especially if they are associated to functional covariates with atypical behaviour. The proposal given in this paper adapts some of the best practices used when the covariates are finite--dimensional to provide reliable estimations. Under regularity conditions, consistency of the resulting estimators and rates of convergence for the predictions are derived. A numerical study illustrates the finite sample performance of the proposed method and reveals its stability under different contamination scenarios. A real data example is also presented.

We consider a Celestial Mechanics model: the spin-orbit problem with a dissipative tidal torque, which is a singular perturbation of a conservative system. The goal of this paper is to show that it is possible to compute quasi-periodic attractors accurately and reliably for parameter values extremely close to the breakdown. Therefore, it is possible to obtain information on mathematical phenomena at breakdown. The method we use incorporates the same time numerical and rigorous improvements. Among them (i) the formalism is based on studying the time-one map of the spin-orbit problem (which reduces the dimensionality of the problem) and has mathematical advantages; (ii) very accurate integration of the ODE (high order Taylor methods implemented with extended precision) for the map at its jets; (iii) a very efficient KAM method for maps which computes the attractor and its tangent spaces ( quadratically convergent step with low storage requirements, and low operation count); (iv) the algorithms are backed by a rigorous a-posteriori KAM Theorem, which establishes that if the algorithm, produces a very approximate solution of functional equation with reasonable condition numbers. then there is a true solution nearby; and (v) the continuation algorithm is guaranteed to reach arbitrarily close to the border of existence if it is given enough computer resources. As a byproduct of the accuracy that we maintain till breakdown, we study several scale invariant observables of the tori used in the renormalization group of infinite dimensional spaces. In contrast with previously studied simple models, the behavior at breakdown of the spin-orbit problem does not satisfy standard scaling relations which implies that the spin-orbit problem is not described by a hyperbolic fixed point of a renormalization operator.

Partially linear additive models generalize linear ones since they model the relation between a response variable and covariates by assuming that some covariates have a linear relation with the response but each of the others enter through unknown univariate smooth functions. The harmful effect of outliers either in the residuals or in the covariates involved in the linear component has been described in the situation of partially linear models, that is, when only one nonparametric component is involved in the model. When dealing with additive components, the problem of providing reliable estimators when atypical data arise, is of practical importance motivating the need of robust procedures. Hence, we propose a family of robust estimators for partially linear additive models by combining $B-$splines with robust linear regression estimators. We obtain consistency results, rates of convergence and asymptotic normality for the linear components, under mild assumptions. A Monte Carlo study is carried out to compare the performance of the robust proposal with its classical counterpart under different models and contamination schemes. The numerical experiments show the advantage of the proposed methodology for finite samples. We also illustrate the usefulness of the proposed approach on a real data set.

Penalized $M-$estimators for logistic regression models have been previously study for fixed dimension in order to obtain sparse statistical models and automatic variable selection. In this paper, we derive asymptotic results for penalized $M-$estimators when the dimension $p$ grows to infinity with the sample size $n$. Specifically, we obtain consistency and rates of convergence results, for some choices of the penalty function. Moreover, we prove that these estimators consistently select variables with probability tending to 1 and derive their asymptotic distribution.

We investigate error of the Euler scheme in the case when the right-hand side function of the underlying ODE satisfies nonstandard assumptions such as local one-sided Lipschitz condition and local H\"older continuity. Moreover, we assume two cases in regards to information availability: exact and noisy with respect to the right-hand side function. Optimality analysis of the Euler scheme is also provided. Finally, we present the results of some numerical experiments.

Linear regression and classification models with repeated functional data are considered. For each statistical unit in the sample, a real-valued parameter is observed over time under different conditions. Two regression models based on fusion penalties are presented. The first one is a generalization of the variable fusion model based on the 1-nearest neighbor. The second one, called group fusion lasso, assumes some grouping structure of conditions and allows for homogeneity among the regression coefficient functions within groups. A finite sample numerical simulation and an application on EEG data are presented.

We consider the degree-Rips construction from topological data analysis, which provides a density-sensitive, multiparameter hierarchical clustering algorithm. We analyze its stability to perturbations of the input data using the correspondence-interleaving distance, a metric for hierarchical clusterings that we introduce. Taking certain one-parameter slices of degree-Rips recovers well-known methods for density-based clustering, but we show that these methods are unstable. However, we prove that degree-Rips, as a multiparameter object, is stable, and we propose an alternative approach for taking slices of degree-Rips, which yields a one-parameter hierarchical clustering algorithm with better stability properties. We prove that this algorithm is consistent, using the correspondence-interleaving distance. We provide an algorithm for extracting a single clustering from one-parameter hierarchical clusterings, which is stable with respect to the correspondence-interleaving distance. And, we integrate these methods into a pipeline for density-based clustering, which we call Persistable. Adapting tools from multiparameter persistent homology, we propose visualization tools that guide the selection of all parameters of the pipeline. We demonstrate Persistable on benchmark datasets, showing that it identifies multi-scale cluster structure in data.

The development of technologies for causal inference with the privacy preservation of distributed data has attracted considerable attention in recent years. To address this issue, we propose a data collaboration quasi-experiment (DC-QE) that enables causal inference from distributed data with privacy preservation. In our method, first, local parties construct dimensionality-reduced intermediate representations from the private data. Second, they share intermediate representations, instead of private data for privacy preservation. Third, propensity scores were estimated from the shared intermediate representations. Finally, the treatment effects were estimated from propensity scores. Our method can reduce both random errors and biases, whereas existing methods can only reduce random errors in the estimation of treatment effects. Through numerical experiments on both artificial and real-world data, we confirmed that our method can lead to better estimation results than individual analyses. Dimensionality-reduction loses some of the information in the private data and causes performance degradation. However, we observed that in the experiments, sharing intermediate representations with many parties to resolve the lack of subjects and covariates, our method improved performance enough to overcome the degradation caused by dimensionality-reduction. With the spread of our method, intermediate representations can be published as open data to help researchers find causalities and accumulated as a knowledge base.

We propose a new discrete choice model, called the generalized stochastic preference (GSP) model, that incorporates non-rationality into the stochastic preference (SP) choice model, also known as the rank- based choice model. Our model can explain several choice phenomena that cannot be represented by any SP model such as the compromise and attraction effects, but still subsumes the SP model class. The GSP model is defined as a distribution over consumer types, where each type extends the choice behavior of rational types in the SP model. We build on existing methods for estimating the SP model and propose an iterative estimation algorithm for the GSP model that finds new types by solving a integer linear program in each iteration. We further show that our proposed notion of non-rationality can be incorporated into other choice models, like the random utility maximization (RUM) model class as well as any of its subclasses. As a concrete example, we introduce the non-rational extension of the classical MNL model, which we term the generalized MNL (GMNL) model and present an efficient expectation-maximization (EM) algorithm for estimating the GMNL model. Numerical evaluation on real choice data shows that the GMNL and GSP models can outperform their rational counterparts in out-of-sample prediction accuracy.

北京阿比特科技有限公司