Large-scale LP problems from industry usually contain much redundancy that severely hurts the efficiency and reliability of solving LPs, making presolve (i.e., the problem simplification module) one of the most critical components in modern LP solvers. However, how to design high-quality presolve routines -- that is, the program determining (P1) which presolvers to select, (P2) in what order to execute, and (P3) when to stop -- remains a highly challenging task due to the extensive requirements on expert knowledge and the large search space. Due to the sequential decision property of the task and the lack of expert demonstrations, we propose a simple and efficient reinforcement learning (RL) framework -- namely, reinforcement learning for presolve (RL4Presolve) -- to tackle (P1)-(P3) simultaneously. Specifically, we formulate the routine design task as a Markov decision process and propose an RL framework with adaptive action sequences to generate high-quality presolve routines efficiently. Note that adaptive action sequences help learn complex behaviors efficiently and adapt to various benchmarks. Experiments on two solvers (open-source and commercial) and eight benchmarks (real-world and synthetic) demonstrate that RL4Presolve significantly and consistently improves the efficiency of solving large-scale LPs, especially on benchmarks from industry. Furthermore, we optimize the hard-coded presolve routines in LP solvers by extracting rules from learned policies for simple and efficient deployment to Huawei's supply chain. The results show encouraging economic and academic potential for incorporating machine learning to modern solvers.
Numerous studies use regression discontinuity design (RDD) for panel data by assuming that the treatment effects are homogeneous across all individuals/groups and pooling the data together. It is unclear how to test for the significance of treatment effects when the treatments vary across individuals/groups and the error terms may exhibit complicated dependence structures. This paper examines the estimation and inference of multiple treatment effects when the errors are not independent and identically distributed, and the treatment effects vary across individuals/groups. We derive a simple analytical expression for approximating the variance-covariance structure of the treatment effect estimators under general dependence conditions and propose two test statistics, one is to test for the overall significance of the treatment effect and the other for the homogeneity of the treatment effects. We find that in the Gaussian approximations to the test statistics, the dependence structures in the data can be safely ignored due to the localized nature of the statistics. This has the important implication that the simulated critical values can be easily obtained. Simulations demonstrate our tests have superb size control and reasonable power performance in finite samples regardless of the presence of strong cross-section dependence or/and weak serial dependence in the data. We apply our tests to two datasets and find significant overall treatment effects in each case.
Individualized treatment rules (ITRs) have been widely applied in many fields such as precision medicine and personalized marketing. Beyond the extensive studies on ITR for binary or multiple treatments, there is considerable interest in applying combination treatments. This paper introduces a novel ITR estimation method for combination treatments incorporating interaction effects among treatments. Specifically, we propose the generalized $\psi$-loss as a non-convex surrogate in the residual weighted learning framework, offering desirable statistical and computational properties. Statistically, the minimizer of the proposed surrogate loss is Fisher-consistent with the optimal decision rules, incorporating interaction effects at any intensity level - a significant improvement over existing methods. Computationally, the proposed method applies the difference-of-convex algorithm for efficient computation. Through simulation studies and real-world data applications, we demonstrate the superior performance of the proposed method in recommending combination treatments.
Accurate hand gesture prediction is crucial for effective upper-limb prosthetic limbs control. As the high flexibility and multiple degrees of freedom exhibited by human hands, there has been a growing interest in integrating deep networks with high-density surface electromyography (HD-sEMG) grids to enhance gesture recognition capabilities. However, many existing methods fall short in fully exploit the specific spatial topology and temporal dependencies present in HD-sEMG data. Additionally, these studies are often limited number of gestures and lack generality. Hence, this study introduces a novel gesture recognition method, named STGCN-GR, which leverages spatio-temporal graph convolution networks for HD-sEMG-based human-machine interfaces. Firstly, we construct muscle networks based on functional connectivity between channels, creating a graph representation of HD-sEMG recordings. Subsequently, a temporal convolution module is applied to capture the temporal dependences in the HD-sEMG series and a spatial graph convolution module is employed to effectively learn the intrinsic spatial topology information among distinct HD-sEMG channels. We evaluate our proposed model on a public HD-sEMG dataset comprising a substantial number of gestures (i.e., 65). Our results demonstrate the remarkable capability of the STGCN-GR method, achieving an impressive accuracy of 91.07% in predicting gestures, which surpasses state-of-the-art deep learning methods applied to the same dataset.
Synthetic control (SC) methods have gained rapid popularity in economics recently, where they have been applied in the context of inferring the effects of treatments on standard continuous outcomes assuming linear input-output relations. In medical applications, conversely, survival outcomes are often of primary interest, a setup in which both commonly assumed data-generating processes (DGPs) and target parameters are different. In this paper, we therefore investigate whether and when SCs could serve as an alternative to matching methods in survival analyses. We find that, because SCs rely on a linearity assumption, they will generally be biased for the true expected survival time in commonly assumed survival DGPs -- even when taking into account the possibility of linearity on another scale as in accelerated failure time models. Additionally, we find that, because SC units follow distributions with lower variance than real control units, summaries of their distributions, such as survival curves, will be biased for the parameters of interest in many survival analyses. Nonetheless, we also highlight that using SCs can still improve upon matching whenever the biases described above are outweighed by extrapolation biases exhibited by imperfect matches, and investigate the use of regularization to trade off the shortcomings of both approaches.
Musculoskeletal diseases and cognitive impairments in patients lead to difficulties in movement as well as negative effects on their psychological health. Clinical gait analysis, a vital tool for early diagnosis and treatment, traditionally relies on expensive optical motion capture systems. Recent advances in computer vision and deep learning have opened the door to more accessible and cost-effective alternatives. This paper introduces a novel spatio-temporal Transformer network to estimate critical gait parameters from RGB videos captured by a single-view camera. Empirical evaluations on a public dataset of cerebral palsy patients indicate that the proposed framework surpasses current state-of-the-art approaches and show significant improvements in predicting general gait parameters (including Walking Speed, Gait Deviation Index - GDI, and Knee Flexion Angle at Maximum Extension), while utilizing fewer parameters and alleviating the need for manual feature extraction.
We examine the linear regression problem in a challenging high-dimensional setting with correlated predictors to explain and predict relevant quantities, with explicitly allowing the regression coefficient to vary from sparse to dense. Most classical high-dimensional regression estimators require some degree of sparsity. We discuss the more recent concepts of variable screening and random projection as computationally fast dimension reduction tools, and propose a new random projection matrix tailored to the linear regression problem with a theoretical bound on the gain in expected prediction error over conventional random projections. Around this new random projection, we built the Sparse Projected Averaged Regression (SPAR) method combining probabilistic variable screening steps with the random projection steps to obtain an ensemble of small linear models. In difference to existing methods, we introduce a thresholding parameter to obtain some degree of sparsity. In extensive simulations and two real data applications we guide through the elements of this method and compare prediction and variable selection performance to various competitors. For prediction, our method performs at least as good as the best competitors in most settings with a high number of truly active variables, while variable selection remains a hard task for all methods in high dimensions.
This manuscript enriches the framework of continuous normalizing flows (CNFs) within causal inference, primarily to augment the geometric properties of parametric submodels used in targeted maximum likelihood estimation (TMLE). By introducing an innovative application of CNFs, we construct a refined series of parametric submodels that enable a directed interpolation between the prior distribution $p_0$ and the empirical distribution $p_1$. This proposed methodology serves to optimize the semiparametric efficiency bound in causal inference by orchestrating CNFs to align with Wasserstein gradient flows. Our approach not only endeavors to minimize the mean squared error in the estimation but also imbues the estimators with geometric sophistication, thereby enhancing robustness against misspecification. This robustness is crucial, as it alleviates the dependence on the standard $n^{\frac{1}{4}}$ rate for a doubly-robust perturbation direction in TMLE. By incorporating robust optimization principles and differential geometry into the estimators, the developed geometry-aware CNFs represent a significant advancement in the pursuit of doubly robust causal inference.
Semantic part segmentation provides an intricate and interpretable understanding of an object, thereby benefiting numerous downstream tasks. However, the need for exhaustive annotations impedes its usage across diverse object types. This paper focuses on learning part segmentation from synthetic animals, leveraging the Skinned Multi-Animal Linear (SMAL) models to scale up existing synthetic data generated by computer-aided design (CAD) animal models. Compared to CAD models, SMAL models generate data with a wider range of poses observed in real-world scenarios. As a result, our first contribution is to construct a synthetic animal dataset of tigers and horses with more pose diversity, termed Synthetic Animal Parts (SAP). We then benchmark Syn-to-Real animal part segmentation from SAP to PartImageNet, namely SynRealPart, with existing semantic segmentation domain adaptation methods and further improve them as our second contribution. Concretely, we examine three Syn-to-Real adaptation methods but observe relative performance drop due to the innate difference between the two tasks. To address this, we propose a simple yet effective method called Class-Balanced Fourier Data Mixing (CB-FDM). Fourier Data Mixing aligns the spectral amplitudes of synthetic images with real images, thereby making the mixed images have more similar frequency content to real images. We further use Class-Balanced Pseudo-Label Re-Weighting to alleviate the imbalanced class distribution. We demonstrate the efficacy of CB-FDM on SynRealPart over previous methods with significant performance improvements. Remarkably, our third contribution is to reveal that the learned parts from synthetic tiger and horse are transferable across all quadrupeds in PartImageNet, further underscoring the utility and potential applications of animal part segmentation.
Collaborative filtering often suffers from sparsity and cold start problems in real recommendation scenarios, therefore, researchers and engineers usually use side information to address the issues and improve the performance of recommender systems. In this paper, we consider knowledge graphs as the source of side information. We propose MKR, a Multi-task feature learning approach for Knowledge graph enhanced Recommendation. MKR is a deep end-to-end framework that utilizes knowledge graph embedding task to assist recommendation task. The two tasks are associated by cross&compress units, which automatically share latent features and learn high-order interactions between items in recommender systems and entities in the knowledge graph. We prove that cross&compress units have sufficient capability of polynomial approximation, and show that MKR is a generalized framework over several representative methods of recommender systems and multi-task learning. Through extensive experiments on real-world datasets, we demonstrate that MKR achieves substantial gains in movie, book, music, and news recommendation, over state-of-the-art baselines. MKR is also shown to be able to maintain a decent performance even if user-item interactions are sparse.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.