亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Cell-Free Massive Multiple-input Multiple-output (mMIMO) consists of many access points (APs) in a coverage area that jointly serve the users. These systems can significantly reduce the interference among the users compared to conventional MIMO networks and so enable higher data rates and a larger coverage area. However, Cell-Free mMIMO systems face multiple practical challenges such as the high complexity and power consumption of the APs' analog front-ends. Motivated by prior works, we address these issues by considering a low complexity hybrid beamforming framework at the APs in which each AP has a limited number of RF-chains to reduce power consumption, and the analog combiner is designed only using the large-scale statistics of the channel to reduce the system's complexity. We provide closed-form expressions for the signal to interference and noise ratio (SINR) of both uplink and downlink data transmission with accurate random matrix approximations. Also, based on the existing literature, we provide a power optimization algorithm that maximizes the minimum SINR of the users for uplink scenario. Through several simulations, we investigate the accuracy of the derived random matrix approximations, trade-off between the 95% outage data rate and the number of RF-chains, and the impact of power optimization. We observe that the derived approximations accurately follow the exact simulations and that in uplink scenario while using MMSE combiner, power optimization does not improve the performance much.

相關內容

Integrated sensing and communication (ISAC) has been regarded as one of the most promising technologies for future wireless communications. However, the mutual interference in the communication radar coexistence system cannot be ignored. Inspired by the studies of reconfigurable intelligent surface (RIS), we propose a double-RIS-assisted coexistence system where two RISs are deployed for enhancing communication signals and suppressing mutual interference. We aim to jointly optimize the beamforming of RISs and radar to maximize communication performance while maintaining radar detection performance. The investigated problem is challenging, and thus we transform it into an equivalent but more tractable form by introducing auxiliary variables. Then, we propose a penalty dual decomposition (PDD)-based algorithm to solve the resultant problem. Moreover, we consider two special cases: the large radar transmit power scenario and the low radar transmit power scenario. For the former, we prove that the beamforming design is only determined by the communication channel and the corresponding optimal joint beamforming strategy can be obtained in closed-form. For the latter, we minimize the mutual interference via the block coordinate descent (BCD) method. By combining the solutions of these two cases, a low-complexity algorithm is also developed. Finally, simulation results show that both the PDD-based and low-complexity algorithms outperform benchmark algorithms.

In this paper, we propose a cell-free scheme for unmanned aerial vehicle (UAV) base stations (BSs) to manage the severe intercell interference between terrestrial users and UAV-BSs of neighboring cells. Since the cell-free scheme requires enormous bandwidth for backhauling, we propose to use the sub-terahertz (sub-THz) band for the backhaul links between UAV-BSs and central processing unit (CPU). Also, because the sub-THz band requires a reliable line-of-sight link, we propose to use a high altitude platform station (HAPS) as a CPU. At the first time-slot of the proposed scheme, users send their messages to UAVs at the sub-6 GHz band. The UAVs then apply match-filtering and power allocation. At the second time-slot, at each UAV, orthogonal resource blocks are allocated for each user at the sub-THz band, and the signals are sent to the HAPS after analog beamforming. In the HAPS receiver, after analog beamforming, the message of each user is decoded. We formulate an optimization problem that maximizes the minimum signal-to-interference-plus-noise ratio of users by finding the optimum allocated power as well as the optimum locations of UAVs. Simulation results demonstrate the superiority of the proposed scheme compared with aerial cellular and terrestrial cell-free baseline schemes.

We propose in this work to employ the Box-LASSO, a variation of the popular LASSO method, as a low-complexity decoder in a massive multiple-input multiple-output (MIMO) wireless communication system. The Box-LASSO is mainly useful for detecting simultaneously structured signals such as signals that are known to be sparse and bounded. One modulation technique that generates essentially sparse and bounded constellation points is the so-called generalized space-shift keying (GSSK) modulation. In this direction, we derive high dimensional sharp characterizations of various performance measures of the Box-LASSO such as the mean square error, probability of support recovery, and the element error rate, under independent and identically distributed (i.i.d.) Gaussian channels that are not perfectly known. In particular, the analytical characterizations can be used to demonstrate performance improvements of the Box-LASSO as compared to the widely used standard LASSO. Then, we can use these measures to optimally tune the involved hyper-parameters of Box-LASSO such as the regularization parameter. In addition, we derive optimum power allocation and training duration schemes in a training-based massive MIMO system. Monte Carlo simulations are used to validate these premises and to show the sharpness of the derived analytical results.

Rate-splitting multiple access (RSMA) has been recognized as a promising and powerful multiple access (MA) scheme, non-orthogonal transmission framework and interference management strategy for 6G. Inspired by the appealing spectral efficiency gain achieved by RSMA over conventional MA schemes in multi-user multi-antenna transmission, in this paper we introduce RSMA to reconfigurable intelligent surface (RIS)-aided multiple-input single-out (MISO) broadcast channel (BC). To further enhance the spectral efficiency, a more generalized RIS architecture called fully connected RIS is considered. By jointly optimizing the scattering matrix of the fully connected RIS and the transmit beamformers to maximize the sum-rate, we show that the proposed fully connected RIS aided RSMA transmission scheme significantly improves the spectral efficiency compared with the conventional single connected RIS schemes and the schemes without RIS. It acts as a new benchmark for linearly precoded multi-user multi-antenna networks.

We consider performance enhancement of asymmetrically-clipped optical orthogonal frequency division multiplexing (ACO-OFDM) and related optical OFDM schemes, which are variations of OFDM in intensity-modulated optical wireless communications. Unlike most existing studies on specific designs of improved receivers, this paper investigates information theoretic limits of all possible receivers. For independent and identically distributed complex Gaussian inputs, we obtain an exact characterization of information rate of ACO-OFDM with improved receivers for all SNRs. It is proved that the high-SNR gain of improved receivers asymptotically achieve 1/4 bits per channel use, which is equivalent to 3 dB in electrical SNR or 1.5 dB in optical SNR; as the SNR decreases, the maximum achievable SNR gain of improved receivers decreases monotonically to a non-zero low-SNR limit, corresponding to an information rate gain of 36.3%. For practically used constellations, we derive an upper bound on the gain of improved receivers. Numerical results demonstrate that the upper bound can be approached to within 1 dB in optical SNR by combining existing improved receivers and coded modulation. We also show that our information theoretic analyses can be extended to Flip-OFDM and PAM-DMT. Our results imply that, for the considered schemes, improved receivers may reduce the gap to channel capacity significantly at low-to-moderate SNR.

High hardware cost and high power consumption of massive multiple-input and multiple output (MIMO) are two challenges for the future wireless communications including beyond fifth generation (B5G) and sixth generation (6G). Adopting the low-resolution analog-to-digital converter (ADC) is viewed as a promising solution. Additionally, the direction of arrival (DOA) estimation is an indispensable technology for beam alignment and tracking in massive MIMO systems. Thus, in this paper, the performance of DOA estimation with mixed-ADC structure is firstly investigated. The Cramer-Rao lower bound (CRLB) for this architecture is derived based on the additive quantization noise model. Eventually, a performance loss factor and the associated energy efficiency factor is defined for analysis in detail. Simulation results show that the mixed-ADC architecture can strike a good balance among performance loss, circuit cost and energy efficiency. More importantly, just a few bits (up to 4 bits) of low-resolution ADCs can achieve a satisfactory performance for DOA measurement.

In an aerial hybrid massive multiple-input multiple-output (MIMO) and orthogonal frequency division multiplexing (OFDM) system, how to design a spectral-efficient broadband multi-user hybrid beamforming with a limited pilot and feedback overhead is challenging. To this end, by modeling the key transmission modules as an end-to-end (E2E) neural network, this paper proposes a data-driven deep learning (DL)-based unified hybrid beamforming framework for both the time division duplex (TDD) and frequency division duplex (FDD) systems with implicit channel state information (CSI). For TDD systems, the proposed DL-based approach jointly models the uplink pilot combining and downlink hybrid beamforming modules as an E2E neural network. While for FDD systems, we jointly model the downlink pilot transmission, uplink CSI feedback, and downlink hybrid beamforming modules as an E2E neural network. Different from conventional approaches separately processing different modules, the proposed solution simultaneously optimizes all modules with the sum rate as the optimization object. Therefore, by perceiving the inherent property of air-to-ground massive MIMO-OFDM channel samples, the DL-based E2E neural network can establish the mapping function from the channel to the beamformer, so that the explicit channel reconstruction can be avoided with reduced pilot and feedback overhead. Besides, practical low-resolution phase shifters (PSs) introduce the quantization constraint, leading to the intractable gradient backpropagation when training the neural network. To mitigate the performance loss caused by the phase quantization error, we adopt the transfer learning strategy to further fine-tune the E2E neural network based on a pre-trained network that assumes the ideal infinite-resolution PSs. Numerical results show that our DL-based schemes have considerable advantages over state-of-the-art schemes.

Massive multiple-input multiple-output (MIMO) is promising for low earth orbit (LEO) satellite communications due to the potential in enhancing the spectral efficiency. However, the conventional fully digital precoding architectures might lead to high implementation complexity and energy consumption. In this paper, hybrid analog/digital precoding solutions are developed for the downlink operation in LEO massive MIMO satellite communications, by exploiting the slow-varying statistical channel state information (CSI) at the transmitter. First, we formulate the hybrid precoder design as an energy efficiency (EE) maximization problem by considering both the continuous and discrete phase shift networks for implementing the analog precoder. The cases of both the fully and the partially connected architectures are considered. Since the EE optimization problem is nonconvex, it is in general difficult to solve. To make the EE maximization problem tractable, we apply a closed-form tight upper bound to approximate the ergodic rate. Then, we develop an efficient algorithm to obtain the fully digital precoders. Based on which, we further develop two different efficient algorithmic solutions to compute the hybrid precoders for the fully and the partially connected architectures, respectively. Simulation results show that the proposed approaches achieve significant EE performance gains over the existing baselines, especially when the discrete phase shift network is employed for analog precoding.

Integrated sensing and communication (ISAC) has opened up numerous game-changing opportunities for realizing future wireless systems. In this paper, we propose an ISAC processing framework relying on millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) systems. Specifically, we provide a compressed sampling (CS) perspective to facilitate ISAC processing, which can not only recover the large-scale channel state information or/and radar imaging information, but also significantly reduce pilot overhead. First, an energy-efficient widely spaced array (WSA) architecture is tailored for the radar receiver, which enhances the angular resolution of radar sensing at the cost of angular ambiguity. Then, we propose an ISAC frame structure for time-variant ISAC systems considering different timescales. The pilot waveforms are judiciously designed by taking into account both CS theories and hardware constraints. Next, we design the dedicated dictionary for WSA that serves as a building block for formulating the ISAC processing as sparse signal recovery problems. The orthogonal matching pursuit with support refinement (OMP-SR) algorithm is proposed to effectively solve the problems in the existence of the angular ambiguity. We also provide a framework for estimating and compensating the Doppler frequencies during payload data transmission to guarantee communication performances. Simulation results demonstrate the good performances of both communications and radar sensing under the proposed ISAC framework.

Integrated Sensing and Communication (ISAC) has attracted substantial attraction in recent years for spectral efficiency improvement, enabling hardware and spectrum sharing for simultaneous sensing and signaling operations. In-band Full Duplex (FD) is being considered as a key enabling technology for ISAC applications due to its simultaneous transmission and reception capability. In this paper, we present an FD-based ISAC system operating at millimeter Wave (mmWave) frequencies, where a massive Multiple-Input Multiple-Output (MIMO) Base Station (BS) node employing hybrid Analog and Digital (A/D) beamforming is communicating with a DownLink (DL) multi-antenna user and the same waveform is utilized at the BS receiver for sensing the radar targets in its coverage environment. We develop a sensing algorithm that is capable of estimating Direction of Arrival (DoA), range, and relative velocity of the radar targets. A joint optimization framework for designing the A/D transmit and receive beamformers as well as the Self-Interference (SI) cancellation is presented with the objective to maximize the achievable DL rate and the accuracy of the radar target sensing performance. Our simulation results, considering fifth Generation (5G) Orthogonal Frequency Division Multiplexing (OFDM) waveforms, verify our approach's high precision in estimating DoA, range, and velocity of multiple radar targets, while maximizing the DL communication rate.

北京阿比特科技有限公司