Deep neural networks based on batch normalization and ReLU-like activation functions can experience instability during the early stages of training due to the high gradient induced by temporal gradient explosion. We explain how ReLU reduces variance more than expected, and how batch normalization amplifies the gradient during recovery, which causes gradient explosion while forward propagation remains stable. Additionally, we discuss how the dynamics of a deep neural network change during training and how the correlation between inputs can alleviate this problem. Lastly, we propose a better adaptive learning rate algorithm inspired by second-order optimization algorithms, which outperforms existing learning rate scaling methods in large batch training and can also replace WarmUp in small batch training.
We consider the problem of fair column subset selection. In particular, we assume that two groups are present in the data, and the chosen column subset must provide a good approximation for both, relative to their respective best rank-k approximations. We show that this fair setting introduces significant challenges: in order to extend known results, one cannot do better than the trivial solution of simply picking twice as many columns as the original methods. We adopt a known approach based on deterministic leverage-score sampling, and show that merely sampling a subset of appropriate size becomes NP-hard in the presence of two groups. Whereas finding a subset of two times the desired size is trivial, we provide an efficient algorithm that achieves the same guarantees with essentially 1.5 times that size. We validate our methods through an extensive set of experiments on real-world data.
Computational efficiency is a major bottleneck in using classic graph-based approaches for semi-supervised learning on datasets with a large number of unlabeled examples. Known techniques to improve efficiency typically involve an approximation of the graph regularization objective, but suffer two major drawbacks - first the graph is assumed to be known or constructed with heuristic hyperparameter values, second they do not provide a principled approximation guarantee for learning over the full unlabeled dataset. Building on recent work on learning graphs for semi-supervised learning from multiple datasets for problems from the same domain, and leveraging techniques for fast approximations for solving linear systems in the graph Laplacian matrix, we propose algorithms that overcome both the above limitations. We show a formal separation in the learning-theoretic complexity of sparse and dense graph families. We further show how to approximately learn the best graphs from the sparse families efficiently using the conjugate gradient method. Our approach can also be used to learn the graph efficiently online with sub-linear regret, under mild smoothness assumptions. Our online learning results are stated generally, and may be useful for approximate and efficient parameter tuning in other problems. We implement our approach and demonstrate significant ($\sim$10-100x) speedups over prior work on semi-supervised learning with learned graphs on benchmark datasets.
In this paper, we present a data-driven strategy to simplify the deployment of model-based controllers in legged robotic hardware platforms. Our approach leverages a model-free safe learning algorithm to automate the tuning of control gains, addressing the mismatch between the simplified model used in the control formulation and the real system. This method substantially mitigates the risk of hazardous interactions with the robot by sample-efficiently optimizing parameters within a probably safe region. Additionally, we extend the applicability of our approach to incorporate the different gait parameters as contexts, leading to a safe, sample-efficient exploration algorithm capable of tuning a motion controller for diverse gait patterns. We validate our method through simulation and hardware experiments, where we demonstrate that the algorithm obtains superior performance on tuning a model-based motion controller for multiple gaits safely.
Forward Gradients - the idea of using directional derivatives in forward differentiation mode - have recently been shown to be utilizable for neural network training while avoiding problems generally associated with backpropagation gradient computation, such as locking and memorization requirements. The cost is the requirement to guess the step direction, which is hard in high dimensions. While current solutions rely on weighted averages over isotropic guess vector distributions, we propose to strongly bias our gradient guesses in directions that are much more promising, such as feedback obtained from small, local auxiliary networks. For a standard computer vision neural network, we conduct a rigorous study systematically covering a variety of combinations of gradient targets and gradient guesses, including those previously presented in the literature. We find that using gradients obtained from a local loss as a candidate direction drastically improves on random noise in Forward Gradient methods.
Conducting valid statistical analyses is challenging in the presence of missing-not-at-random (MNAR) data, where the missingness mechanism is dependent on the missing values themselves even conditioned on the observed data. Here, we consider a MNAR model that generalizes several prior popular MNAR models in two ways: first, it is less restrictive in terms of statistical independence assumptions imposed on the underlying joint data distribution, and second, it allows for all variables in the observed sample to have missing values. This MNAR model corresponds to a so-called criss-cross structure considered in the literature on graphical models of missing data that prevents nonparametric identification of the entire missing data model. Nonetheless, part of the complete-data distribution remains nonparametrically identifiable. By exploiting this fact and considering a rich class of exponential family distributions, we establish sufficient conditions for identification of the complete-data distribution as well as the entire missingness mechanism. We then propose methods for testing the independence restrictions encoded in such models using odds ratio as our parameter of interest. We adopt two semiparametric approaches for estimating the odds ratio parameter and establish the corresponding asymptotic theories: one involves maximizing a conditional likelihood with order statistics and the other uses estimating equations. The utility of our methods is illustrated via simulation studies.
The $\alpha$-$\eta$-$\kappa$-$\mu$ is one of the most generalized and flexible channel models having an excellent fit to experimental data from diverse propagation environments. The existing statistical results on the envelope of $\alpha$-$\eta$-$\kappa$-$\mu$ model contain an infinite series involving regularized hypergeometric function and generalized Laguerre polynomial, prohibiting its widespread application in the performance analysis of wireless systems. In this paper, we employ a novel approach to derive density and distribution functions of the envelope of the $\alpha$-$\eta$-$\kappa$-$\mu$ fading channel without an infinite series approximation. The derived statistical results are presented using a single Fox's H-function for tractable performance analysis and efficient numerical computations, especially for high-frequency mmWave and terahertz wireless transmissions. To gain insight into the distribution of channel envelope, we develop an asymptotic analysis using a more straightforward Gamma function converging to the exact within a reasonable range of channel parameters. To further substantiate the proposed analysis, we present the exact outage probability and average bit-error-rate (BER) performance of a wireless link subjected to the $\alpha$-$\eta$-$\kappa$-$\mu$ fading model using a single tri-variate Fox's H-function. We obtain the diversity order of the system by analyzing the outage probability at a high signal-to-noise (SNR) ratio. We use numerical and simulation analysis to demonstrate the significance of the developed statistical results compared with the existing infinite series representation for the envelope of the $\alpha$-$\eta$-$\kappa$-$\mu$ model.
Deep reinforcement learning algorithms can perform poorly in real-world tasks due to the discrepancy between source and target environments. This discrepancy is commonly viewed as the disturbance in transition dynamics. Many existing algorithms learn robust policies by modeling the disturbance and applying it to source environments during training, which usually requires prior knowledge about the disturbance and control of simulators. However, these algorithms can fail in scenarios where the disturbance from target environments is unknown or is intractable to model in simulators. To tackle this problem, we propose a novel model-free actor-critic algorithm -- namely, state-conservative policy optimization (SCPO) -- to learn robust policies without modeling the disturbance in advance. Specifically, SCPO reduces the disturbance in transition dynamics to that in state space and then approximates it by a simple gradient-based regularizer. The appealing features of SCPO include that it is simple to implement and does not require additional knowledge about the disturbance or specially designed simulators. Experiments in several robot control tasks demonstrate that SCPO learns robust policies against the disturbance in transition dynamics.
Current deep learning research is dominated by benchmark evaluation. A method is regarded as favorable if it empirically performs well on the dedicated test set. This mentality is seamlessly reflected in the resurfacing area of continual learning, where consecutively arriving sets of benchmark data are investigated. The core challenge is framed as protecting previously acquired representations from being catastrophically forgotten due to the iterative parameter updates. However, comparison of individual methods is nevertheless treated in isolation from real world application and typically judged by monitoring accumulated test set performance. The closed world assumption remains predominant. It is assumed that during deployment a model is guaranteed to encounter data that stems from the same distribution as used for training. This poses a massive challenge as neural networks are well known to provide overconfident false predictions on unknown instances and break down in the face of corrupted data. In this work we argue that notable lessons from open set recognition, the identification of statistically deviating data outside of the observed dataset, and the adjacent field of active learning, where data is incrementally queried such that the expected performance gain is maximized, are frequently overlooked in the deep learning era. Based on these forgotten lessons, we propose a consolidated view to bridge continual learning, active learning and open set recognition in deep neural networks. Our results show that this not only benefits each individual paradigm, but highlights the natural synergies in a common framework. We empirically demonstrate improvements when alleviating catastrophic forgetting, querying data in active learning, selecting task orders, while exhibiting robust open world application where previously proposed methods fail.
For deploying a deep learning model into production, it needs to be both accurate and compact to meet the latency and memory constraints. This usually results in a network that is deep (to ensure performance) and yet thin (to improve computational efficiency). In this paper, we propose an efficient method to train a deep thin network with a theoretic guarantee. Our method is motivated by model compression. It consists of three stages. In the first stage, we sufficiently widen the deep thin network and train it until convergence. In the second stage, we use this well-trained deep wide network to warm up (or initialize) the original deep thin network. This is achieved by letting the thin network imitate the immediate outputs of the wide network from layer to layer. In the last stage, we further fine tune this well initialized deep thin network. The theoretical guarantee is established by using mean field analysis, which shows the advantage of layerwise imitation over traditional training deep thin networks from scratch by backpropagation. We also conduct large-scale empirical experiments to validate our approach. By training with our method, ResNet50 can outperform ResNet101, and BERT_BASE can be comparable with BERT_LARGE, where both the latter models are trained via the standard training procedures as in the literature.
Learning similarity functions between image pairs with deep neural networks yields highly correlated activations of embeddings. In this work, we show how to improve the robustness of such embeddings by exploiting the independence within ensembles. To this end, we divide the last embedding layer of a deep network into an embedding ensemble and formulate training this ensemble as an online gradient boosting problem. Each learner receives a reweighted training sample from the previous learners. Further, we propose two loss functions which increase the diversity in our ensemble. These loss functions can be applied either for weight initialization or during training. Together, our contributions leverage large embedding sizes more effectively by significantly reducing correlation of the embedding and consequently increase retrieval accuracy of the embedding. Our method works with any differentiable loss function and does not introduce any additional parameters during test time. We evaluate our metric learning method on image retrieval tasks and show that it improves over state-of-the-art methods on the CUB 200-2011, Cars-196, Stanford Online Products, In-Shop Clothes Retrieval and VehicleID datasets.