亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce Audio-Agent, a multimodal framework for audio generation, editing and composition based on text or video inputs. Conventional approaches for text-to-audio (TTA) tasks often make single-pass inferences from text descriptions. While straightforward, this design struggles to produce high-quality audio when given complex text conditions. In our method, we utilize a pre-trained TTA diffusion network as the audio generation agent to work in tandem with GPT-4, which decomposes the text condition into atomic, specific instructions, and calls the agent for audio generation. Consequently, Audio-Agent generates high-quality audio that is closely aligned with the provided text or video while also supporting variable-length generation. For video-to-audio (VTA) tasks, most existing methods require training a timestamp detector to synchronize video events with generated audio, a process that can be tedious and time-consuming. We propose a simpler approach by fine-tuning a pre-trained Large Language Model (LLM), e.g., Gemma2-2B-it, to obtain both semantic and temporal conditions to bridge video and audio modality. Thus our framework provides a comprehensive solution for both TTA and VTA tasks without substantial computational overhead in training.

相關內容

We propose MikuDance, a diffusion-based pipeline incorporating mixed motion dynamics to animate stylized character art. MikuDance consists of two key techniques: Mixed Motion Modeling and Mixed-Control Diffusion, to address the challenges of high-dynamic motion and reference-guidance misalignment in character art animation. Specifically, a Scene Motion Tracking strategy is presented to explicitly model the dynamic camera in pixel-wise space, enabling unified character-scene motion modeling. Building on this, the Mixed-Control Diffusion implicitly aligns the scale and body shape of diverse characters with motion guidance, allowing flexible control of local character motion. Subsequently, a Motion-Adaptive Normalization module is incorporated to effectively inject global scene motion, paving the way for comprehensive character art animation. Through extensive experiments, we demonstrate the effectiveness and generalizability of MikuDance across various character art and motion guidance, consistently producing high-quality animations with remarkable motion dynamics.

We introduce INQUIRE, a text-to-image retrieval benchmark designed to challenge multimodal vision-language models on expert-level queries. INQUIRE includes iNaturalist 2024 (iNat24), a new dataset of five million natural world images, along with 250 expert-level retrieval queries. These queries are paired with all relevant images comprehensively labeled within iNat24, comprising 33,000 total matches. Queries span categories such as species identification, context, behavior, and appearance, emphasizing tasks that require nuanced image understanding and domain expertise. Our benchmark evaluates two core retrieval tasks: (1) INQUIRE-Fullrank, a full dataset ranking task, and (2) INQUIRE-Rerank, a reranking task for refining top-100 retrievals. Detailed evaluation of a range of recent multimodal models demonstrates that INQUIRE poses a significant challenge, with the best models failing to achieve an mAP@50 above 50%. In addition, we show that reranking with more powerful multimodal models can enhance retrieval performance, yet there remains a significant margin for improvement. By focusing on scientifically-motivated ecological challenges, INQUIRE aims to bridge the gap between AI capabilities and the needs of real-world scientific inquiry, encouraging the development of retrieval systems that can assist with accelerating ecological and biodiversity research. Our dataset and code are available at //inquire-benchmark.github.io

The advent of AI-Generated Content (AIGC) has spurred research into automated video generation to streamline conventional processes. However, automating storytelling video production, particularly for customized narratives, remains challenging due to the complexity of maintaining subject consistency across shots. While existing approaches like Mora and AesopAgent integrate multiple agents for Story-to-Video (S2V) generation, they fall short in preserving protagonist consistency and supporting Customized Storytelling Video Generation (CSVG). To address these limitations, we propose StoryAgent, a multi-agent framework designed for CSVG. StoryAgent decomposes CSVG into distinct subtasks assigned to specialized agents, mirroring the professional production process. Notably, our framework includes agents for story design, storyboard generation, video creation, agent coordination, and result evaluation. Leveraging the strengths of different models, StoryAgent enhances control over the generation process, significantly improving character consistency. Specifically, we introduce a customized Image-to-Video (I2V) method, LoRA-BE, to enhance intra-shot temporal consistency, while a novel storyboard generation pipeline is proposed to maintain subject consistency across shots. Extensive experiments demonstrate the effectiveness of our approach in synthesizing highly consistent storytelling videos, outperforming state-of-the-art methods. Our contributions include the introduction of StoryAgent, a versatile framework for video generation tasks, and novel techniques for preserving protagonist consistency.

Learning-based image compression methods have improved in recent years and started to outperform traditional codecs. However, neural-network approaches can unexpectedly introduce visual artifacts in some images. We therefore propose methods to separately detect three types of artifacts (texture and boundary degradation, color change, and text corruption), to localize the affected regions, and to quantify the artifact strength. We consider only those regions that exhibit distortion due solely to the neural compression but that a traditional codec recovers successfully at a comparable bitrate. We employed our methods to collect artifacts for the JPEG AI verification model with respect to HM-18.0, the H.265 reference software. We processed about 350,000 unique images from the Open Images dataset using different compression-quality parameters; the result is a dataset of 46,440 artifacts validated through crowd-sourced subjective assessment. Our proposed dataset and methods are valuable for testing neural-network-based image codecs, identifying bugs in these codecs, and enhancing their performance. We make source code of the methods and the dataset publicly available.

This paper introduces H-MaP, a hybrid sequential manipulation planner that addresses complex tasks requiring both sequential actions and dynamic contact mode switches. Our approach reduces configuration space dimensionality by decoupling object trajectory planning from manipulation planning through object-based waypoint generation, informed contact sampling, and optimization-based motion planning. This architecture enables handling of challenging scenarios involving tool use, auxiliary object manipulation, and bimanual coordination. Experimental results across seven diverse tasks demonstrate H-MaP's superior performance compared to existing methods, particularly in highly constrained environments where traditional approaches fail due to local minima or scalability issues. The planner's effectiveness is validated through both simulation and real-robot experiments.

Shadow removal and segmentation remain challenging tasks in computer vision, particularly in complex real-world scenarios. This study presents a novel approach that enhances the ShadowFormer model by incorporating Masked Autoencoder (MAE) priors and Fast Fourier Convolution (FFC) blocks, leading to significantly faster convergence and improved performance. We introduce key innovations: (1) integration of MAE priors trained on Places2 dataset for better context understanding, (2) adoption of Haar wavelet features for enhanced edge detection and multi-scale analysis, and (3) implementation of a modified SAM Adapter for robust shadow segmentation. Extensive experiments on the challenging DESOBA dataset demonstrate that our approach achieves state-of-the-art results, with notable improvements in both convergence speed and shadow removal quality.

Autonomous Vehicle (AV) perception systems require more than simply seeing, via e.g., object detection or scene segmentation. They need a holistic understanding of what is happening within the scene for safe interaction with other road users. Few datasets exist for the purpose of developing and training algorithms to comprehend the actions of other road users. This paper presents ROAD-Waymo, an extensive dataset for the development and benchmarking of techniques for agent, action, location and event detection in road scenes, provided as a layer upon the (US) Waymo Open dataset. Considerably larger and more challenging than any existing dataset (and encompassing multiple cities), it comes with 198k annotated video frames, 54k agent tubes, 3.9M bounding boxes and a total of 12.4M labels. The integrity of the dataset has been confirmed and enhanced via a novel annotation pipeline designed for automatically identifying violations of requirements specifically designed for this dataset. As ROAD-Waymo is compatible with the original (UK) ROAD dataset, it provides the opportunity to tackle domain adaptation between real-world road scenarios in different countries within a novel benchmark: ROAD++.

Byte Pair Encoding (BPE) serves as a foundation method for text tokenization in the Natural Language Processing (NLP) field. Despite its wide adoption, the original BPE algorithm harbors an inherent flaw: it inadvertently introduces a frequency imbalance for tokens in the text corpus. Since BPE iteratively merges the most frequent token pair in the text corpus to generate a new token and keeps all generated tokens in the vocabulary, it unavoidably holds tokens that primarily act as components of a longer token and appear infrequently on their own. We term such tokens as Scaffold Tokens. Due to their infrequent occurrences in the text corpus, Scaffold Tokens pose a learning imbalance issue. To address that issue, we propose Scaffold-BPE, which incorporates a dynamic scaffold token removal mechanism by parameter-free, computation-light, and easy-to-implement modifications to the original BPE method. This novel approach ensures the exclusion of low-frequency Scaffold Tokens from the token representations for given texts, thereby mitigating the issue of frequency imbalance and facilitating model training. On extensive experiments across language modeling and even machine translation, Scaffold-BPE consistently outperforms the original BPE, well demonstrating its effectiveness.

In the realm of medical image segmentation, both CNN-based and Transformer-based models have been extensively explored. However, CNNs exhibit limitations in long-range modeling capabilities, whereas Transformers are hampered by their quadratic computational complexity. Recently, State Space Models (SSMs), exemplified by Mamba, have emerged as a promising approach. They not only excel in modeling long-range interactions but also maintain a linear computational complexity. In this paper, leveraging state space models, we propose a U-shape architecture model for medical image segmentation, named Vision Mamba UNet (VM-UNet). Specifically, the Visual State Space (VSS) block is introduced as the foundation block to capture extensive contextual information, and an asymmetrical encoder-decoder structure is constructed with fewer convolution layers to save calculation cost. We conduct comprehensive experiments on the ISIC17, ISIC18, and Synapse datasets, and the results indicate that VM-UNet performs competitively in medical image segmentation tasks. To our best knowledge, this is the first medical image segmentation model constructed based on the pure SSM-based model. We aim to establish a baseline and provide valuable insights for the future development of more efficient and effective SSM-based segmentation systems. Our code is available at //github.com/JCruan519/VM-UNet.

This paper describes a general framework for learning Higher-Order Network Embeddings (HONE) from graph data based on network motifs. The HONE framework is highly expressive and flexible with many interchangeable components. The experimental results demonstrate the effectiveness of learning higher-order network representations. In all cases, HONE outperforms recent embedding methods that are unable to capture higher-order structures with a mean relative gain in AUC of $19\%$ (and up to $75\%$ gain) across a wide variety of networks and embedding methods.

北京阿比特科技有限公司