Pericoronary adipose tissue (PCAT) is the deposition of fat in the vicinity of the coronary arteries. It is an indicator of coronary inflammation and associated with coronary artery disease. Non-invasive coronary CT angiography (CCTA) is presently used to obtain measures of the thickness, volume, and attenuation of fat deposition. However, prior works solely focus on measuring PCAT using semi-automated approaches at the right coronary artery (RCA) over the left coronary artery (LCA). In this pilot work, we developed a fully automated approach for the measurement of PCAT mean attenuation and volume in the region around both coronary arteries. First, we used a large subset of patients from the public ImageCAS dataset (n = 735) to train a 3D full resolution nnUNet to segment LCA and RCA. Then, we automatically measured PCAT in the surrounding arterial regions. We evaluated our method on a held-out test set of patients (n = 183) from the same dataset. A mean Dice score of 83% and PCAT attenuation of -73.81 $\pm$ 12.69 HU was calculated for the RCA, while a mean Dice score of 81% and PCAT attenuation of -77.51 $\pm$ 7.94 HU was computed for the LCA. To the best of our knowledge, we are the first to develop a fully automated method to measure PCAT attenuation and volume at both the RCA and LCA. Our work underscores how automated PCAT measurement holds promise as a biomarker for identification of inflammation and cardiac disease.
Analyzing age-specific mortality, fertility, and migration in subpopulations is a crucial task in demography, with significant policy relevance. In practice, such analysis is challenging when studying numerous subpopulations, due to small sample sizes and demographic heterogeneity. To address this issue, a Bayesian model for the joint analysis of many, potentially small, demographic subgroups is proposed. The model combines three common assumptions about demographic processes in a unified probabilistic framework. The approach provides robust estimates of the demographic process in each subpopulation, allows testing for heterogeneity between subpopulations, and can be used to assess the impact of covariates on the demographic process. This makes the model suitable for probabilistic projection exercises and scenario analysis. An in-depth analysis of age-specific immigration flows to Austria, disaggregated by sex and 155 countries of origin, is used to illustrate the framework. Comparative analysis shows that the model outperforms commonly used benchmark frameworks in both in-sample imputation and out-of-sample prediction exercises.
Functional magnetic resonance imaging (fMRI) plays a crucial role in neuroimaging, enabling the exploration of brain activity through complex-valued signals. These signals, composed of magnitude and phase, offer a rich source of information for understanding brain functions. Traditional fMRI analyses have largely focused on magnitude information, often overlooking the potential insights offered by phase data. In this paper, we propose a novel fully Bayesian model designed for analyzing single-subject complex-valued fMRI (cv-fMRI) data. Our model, which we refer to as the CV-M&P model, is distinctive in its comprehensive utilization of both magnitude and phase information in fMRI signals, allowing for independent prediction of different types of activation maps. We incorporate Gaussian Markov random fields (GMRFs) to capture spatial correlations within the data, and employ image partitioning and parallel computation to enhance computational efficiency. Our model is rigorously tested through simulation studies, and then applied to a real dataset from a unilateral finger-tapping experiment. The results demonstrate the model's effectiveness in accurately identifying brain regions activated in response to specific tasks, distinguishing between magnitude and phase activation.
Visual Speech Recognition (VSR) is the task of predicting spoken words from silent lip movements. VSR is regarded as a challenging task because of the insufficient information on lip movements. In this paper, we propose an Audio Knowledge empowered Visual Speech Recognition framework (AKVSR) to complement the insufficient speech information of visual modality by using audio modality. Different from the previous methods, the proposed AKVSR 1) utilizes rich audio knowledge encoded by a large-scale pretrained audio model, 2) saves the linguistic information of audio knowledge in compact audio memory by discarding the non-linguistic information from the audio through quantization, and 3) includes Audio Bridging Module which can find the best-matched audio features from the compact audio memory, which makes our training possible without audio inputs, once after the compact audio memory is composed. We validate the effectiveness of the proposed method through extensive experiments, and achieve new state-of-the-art performances on the widely-used LRS3 dataset.
Recent studies have highlighted the issue of stereotypical depictions for people of different identity groups in Text-to-Image (T2I) model generations. However, these existing approaches have several key limitations, including a noticeable lack of coverage of global identity groups in their evaluation, and the range of their associated stereotypes. Additionally, they often lack a critical distinction between inherently visual stereotypes, such as `underweight' or `sombrero', and culturally dependent stereotypes like `attractive' or `terrorist'. In this work, we address these limitations with a multifaceted approach that leverages existing textual resources to ground our evaluation of geo-cultural stereotypes in the generated images from T2I models. We employ existing stereotype benchmarks to identify and evaluate visual stereotypes at a global scale, spanning 135 nationality-based identity groups. We demonstrate that stereotypical attributes are thrice as likely to be present in images of these identities as compared to other attributes. We further investigate how disparately offensive the depictions of generated images are for different nationalities. Finally, through a detailed case study, we reveal how the 'default' representations of all identity groups have a stereotypical appearance. Moreover, for the Global South, images across different attributes are visually similar, even when explicitly prompted otherwise. CONTENT WARNING: Some examples may contain offensive stereotypes.
Purpose: Lymph nodes (LNs) in the chest have a tendency to enlarge due to various pathologies, such as lung cancer or pneumonia. Clinicians routinely measure nodal size to monitor disease progression, confirm metastatic cancer, and assess treatment response. However, variations in their shapes and appearances make it cumbersome to identify LNs, which reside outside of most organs. Methods: We propose to segment LNs in the mediastinum by leveraging the anatomical priors of 28 different structures (e.g., lung, trachea etc.) generated by the public TotalSegmentator tool. The CT volumes from 89 patients available in the public NIH CT Lymph Node dataset were used to train three 3D nnUNet models to segment LNs. The public St. Olavs dataset containing 15 patients (out-of-training-distribution) was used to evaluate the segmentation performance. Results: For the 15 test patients, the 3D cascade nnUNet model obtained the highest Dice score of 72.2 +- 22.3 for mediastinal LNs with short axis diameter $\geq$ 8mm and 54.8 +- 23.8 for all LNs respectively. These results represent an improvement of 10 points over a current approach that was evaluated on the same test dataset. Conclusion: To our knowledge, we are the first to harness 28 distinct anatomical priors to segment mediastinal LNs, and our work can be extended to other nodal zones in the body. The proposed method has immense potential for improved patient outcomes through the identification of enlarged nodes in initial staging CT scans.
When is heterogeneity in the composition of an autonomous robotic team beneficial and when is it detrimental? We investigate and answer this question in the context of a minimally viable model that examines the role of heterogeneous speeds in perimeter defense problems, where defenders share a total allocated speed budget. We consider two distinct problem settings and develop strategies based on dynamic programming and on local interaction rules. We present a theoretical analysis of both approaches and our results are extensively validated using simulations. Interestingly, our results demonstrate that the viability of heterogeneous teams depends on the amount of information available to the defenders. Moreover, our results suggest a universality property: across a wide range of problem parameters the optimal ratio of the speeds of the defenders remains nearly constant.
Recently, Mutual Information (MI) has attracted attention in bounding the generalization error of Deep Neural Networks (DNNs). However, it is intractable to accurately estimate the MI in DNNs, thus most previous works have to relax the MI bound, which in turn weakens the information theoretic explanation for generalization. To address the limitation, this paper introduces a probabilistic representation of DNNs for accurately estimating the MI. Leveraging the proposed MI estimator, we validate the information theoretic explanation for generalization, and derive a tighter generalization bound than the state-of-the-art relaxations.
We consider the problem of explaining the predictions of graph neural networks (GNNs), which otherwise are considered as black boxes. Existing methods invariably focus on explaining the importance of graph nodes or edges but ignore the substructures of graphs, which are more intuitive and human-intelligible. In this work, we propose a novel method, known as SubgraphX, to explain GNNs by identifying important subgraphs. Given a trained GNN model and an input graph, our SubgraphX explains its predictions by efficiently exploring different subgraphs with Monte Carlo tree search. To make the tree search more effective, we propose to use Shapley values as a measure of subgraph importance, which can also capture the interactions among different subgraphs. To expedite computations, we propose efficient approximation schemes to compute Shapley values for graph data. Our work represents the first attempt to explain GNNs via identifying subgraphs explicitly and directly. Experimental results show that our SubgraphX achieves significantly improved explanations, while keeping computations at a reasonable level.
Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.
While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on the ImageNet classification task has been remarkably useful as a training loss for image synthesis. But how perceptual are these so-called "perceptual losses"? What elements are critical for their success? To answer these questions, we introduce a new Full Reference Image Quality Assessment (FR-IQA) dataset of perceptual human judgments, orders of magnitude larger than previous datasets. We systematically evaluate deep features across different architectures and tasks and compare them with classic metrics. We find that deep features outperform all previous metrics by huge margins. More surprisingly, this result is not restricted to ImageNet-trained VGG features, but holds across different deep architectures and levels of supervision (supervised, self-supervised, or even unsupervised). Our results suggest that perceptual similarity is an emergent property shared across deep visual representations.