亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents local asymptotic minimax regret lower bounds for adaptive Linear Quadratic Regulators (LQR). We consider affinely parametrized $B$-matrices and known $A$-matrices and aim to understand when logarithmic regret is impossible even in the presence of structural side information. After defining the intrinsic notion of an uninformative optimal policy in terms of a singularity condition for Fisher information we obtain local minimax regret lower bounds for such uninformative instances of LQR by appealing to van Trees' inequality (Bayesian Cram\'er-Rao) and a representation of regret in terms of a quadratic form (Bellman error). It is shown that if the parametrization induces an uninformative optimal policy, logarithmic regret is impossible and the rate is at least order square root in the time horizon. We explicitly characterize the notion of an uninformative optimal policy in terms of the nullspaces of system-theoretic quantities and the particular instance parametrization.

相關內容

Kernel mean embeddings are a popular tool that consists in representing probability measures by their infinite-dimensional mean embeddings in a reproducing kernel Hilbert space. When the kernel is characteristic, mean embeddings can be used to define a distance between probability measures, known as the maximum mean discrepancy (MMD). A well-known advantage of mean embeddings and MMD is their low computational cost and low sample complexity. However, kernel mean embeddings have had limited applications to problems that consist in optimizing distributions, due to the difficulty of characterizing which Hilbert space vectors correspond to a probability distribution. In this note, we propose to leverage the kernel sums-of-squares parameterization of positive functions of Marteau-Ferey et al. [2020] to fit distributions in the MMD geometry. First, we show that when the kernel is characteristic, distributions with a kernel sum-of-squares density are dense. Then, we provide algorithms to optimize such distributions in the finite-sample setting, which we illustrate in a density fitting numerical experiment.

We analyze the Lanczos method for matrix function approximation (Lanczos-FA), an iterative algorithm for computing $f(\mathbf{A}) \mathbf{b}$ when $\mathbf{A}$ is a Hermitian matrix and $\mathbf{b}$ is a given mathbftor. Assuming that $f : \mathbb{C} \rightarrow \mathbb{C}$ is piecewise analytic, we give a framework, based on the Cauchy integral formula, which can be used to derive {\em a priori} and \emph{a posteriori} error bounds for Lanczos-FA in terms of the error of Lanczos used to solve linear systems. Unlike many error bounds for Lanczos-FA, these bounds account for fine-grained properties of the spectrum of $\mathbf{A}$, such as clustered or isolated eigenvalues. Our results are derived assuming exact arithmetic, but we show that they are easily extended to finite precision computations using existing theory about the Lanczos algorithm in finite precision. We also provide generalized bounds for the Lanczos method used to approximate quadratic forms $\mathbf{b}^\textsf{H} f(\mathbf{A}) \mathbf{b}$, and demonstrate the effectiveness of our bounds with numerical experiments.

In this paper, we are interested in nonparametric kernel estimation of a generalized regression function, including conditional cumulative distribution and conditional quantile functions, based on an incomplete sample $(X_t, Y_t, \zeta_t)_{t\in \mathbb{ R}^+}$ copies of a continuous-time stationary ergodic process $(X, Y, \zeta)$. The predictor $X$ is valued in some infinite-dimensional space, whereas the real-valued process $Y$ is observed when $\zeta= 1$ and missing whenever $\zeta = 0$. Pointwise and uniform consistency (with rates) of these estimators as well as a central limit theorem are established. Conditional bias and asymptotic quadratic error are also provided. Asymptotic and bootstrap-based confidence intervals for the generalized regression function are also discussed. A first simulation study is performed to compare the discrete-time to the continuous-time estimations. A second simulation is also conducted to discuss the selection of the optimal sampling mesh in the continuous-time case. Finally, it is worth noting that our results are stated under ergodic assumption without assuming any classical mixing conditions.

We study fast algorithms for computing fundamental properties of a positive semidefinite kernel matrix $K \in \mathbb{R}^{n \times n}$ corresponding to $n$ points $x_1,\ldots,x_n \in \mathbb{R}^d$. In particular, we consider estimating the sum of kernel matrix entries, along with its top eigenvalue and eigenvector. We show that the sum of matrix entries can be estimated to $1+\epsilon$ relative error in time $sublinear$ in $n$ and linear in $d$ for many popular kernels, including the Gaussian, exponential, and rational quadratic kernels. For these kernels, we also show that the top eigenvalue (and an approximate eigenvector) can be approximated to $1+\epsilon$ relative error in time $subquadratic$ in $n$ and linear in $d$. Our algorithms represent significant advances in the best known runtimes for these problems. They leverage the positive definiteness of the kernel matrix, along with a recent line of work on efficient kernel density estimation.

To understand the behavior of large dynamical systems like transportation networks, one must often rely on measurements transmitted by a set of sensors, for instance individual vehicles. Such measurements are likely to be incomplete and imprecise, which makes it hard to recover the underlying signal of interest.Hoping to quantify this phenomenon, we study the properties of a partially-observed state-space model. In our setting, the latent state $X$ follows a high-dimensional Vector AutoRegressive process $X_t = \theta X_{t-1} + \varepsilon_t$. Meanwhile, the observations $Y$ are given by a noise-corrupted random sample from the state $Y_t = \Pi_t X_t + \eta_t$. Several random sampling mechanisms are studied, allowing us to investigate the effect of spatial and temporal correlations in the distribution of the sampling matrices $\Pi_t$.We first prove a lower bound on the minimax estimation error for the transition matrix $\theta$. We then describe a sparse estimator based on the Dantzig selector and upper bound its non-asymptotic error, showing that it achieves the optimal convergence rate for most of our sampling mechanisms. Numerical experiments on simulated time series validate our theoretical findings, while an application to open railway data highlights the relevance of this model for public transport traffic analysis.

In this paper we study covariance estimation with missing data. We consider missing data mechanisms that can be independent of the data, or have a time varying dependency. Additionally, observed variables may have arbitrary (non uniform) and dependent observation probabilities. For each mechanism, we construct an unbiased estimator and obtain bounds for the expected value of their estimation error in operator norm. Our bounds are equivalent, up to constant and logarithmic factors, to state of the art bounds for complete and uniform missing observations. Furthermore, for the more general non uniform and dependent cases, the proposed bounds are new or improve upon previous results. Our error estimates depend on quantities we call scaled effective rank, which generalize the effective rank to account for missing observations. All the estimators studied in this work have the same asymptotic convergence rate (up to logarithmic factors).

Two-phase designs measure variables of interest on a subcohort where the outcome and covariates are readily available or cheap to collect on all individuals in the cohort. Given limited resource availability, it is of interest to find an optimal design that includes more informative individuals in the final sample. We explore the optimal designs and efficiencies for analysis by design-based estimators. Generalized raking is an efficient design-based estimator that improves on the inverse-probability weighted (IPW) estimator by adjusting weights based on the auxiliary information. We derive a closed-form solution of the optimal design for estimating regression coefficients from generalized raking estimators. We compare it with the optimal design for analysis via the IPW estimator and other two-phase designs in measurement-error settings. We consider general two-phase designs where the outcome variable and variables of interest can be continuous or discrete. Our results show that the optimal designs for analysis by the two design-based estimators can be very different. The optimal design for IPW estimation is optimal for analysis via the IPW estimator and typically gives near-optimal efficiency for generalized raking, though we show there is potential improvement in some settings.

Proximal Policy Optimization (PPO) is a highly popular model-free reinforcement learning (RL) approach. However, in continuous state and actions spaces and a Gaussian policy -- common in computer animation and robotics -- PPO is prone to getting stuck in local optima. In this paper, we observe a tendency of PPO to prematurely shrink the exploration variance, which naturally leads to slow progress. Motivated by this, we borrow ideas from CMA-ES, a black-box optimization method designed for intelligent adaptive Gaussian exploration, to derive PPO-CMA, a novel proximal policy optimization approach that can expand the exploration variance on objective function slopes and shrink the variance when close to the optimum. This is implemented by using separate neural networks for policy mean and variance and training the mean and variance in separate passes. Our experiments demonstrate a clear improvement over vanilla PPO in many difficult OpenAI Gym MuJoCo tasks.

We show that for the problem of testing if a matrix $A \in F^{n \times n}$ has rank at most $d$, or requires changing an $\epsilon$-fraction of entries to have rank at most $d$, there is a non-adaptive query algorithm making $\widetilde{O}(d^2/\epsilon)$ queries. Our algorithm works for any field $F$. This improves upon the previous $O(d^2/\epsilon^2)$ bound (SODA'03), and bypasses an $\Omega(d^2/\epsilon^2)$ lower bound of (KDD'14) which holds if the algorithm is required to read a submatrix. Our algorithm is the first such algorithm which does not read a submatrix, and instead reads a carefully selected non-adaptive pattern of entries in rows and columns of $A$. We complement our algorithm with a matching query complexity lower bound for non-adaptive testers over any field. We also give tight bounds of $\widetilde{\Theta}(d^2)$ queries in the sensing model for which query access comes in the form of $\langle X_i, A\rangle:=tr(X_i^\top A)$; perhaps surprisingly these bounds do not depend on $\epsilon$. We next develop a novel property testing framework for testing numerical properties of a real-valued matrix $A$ more generally, which includes the stable rank, Schatten-$p$ norms, and SVD entropy. Specifically, we propose a bounded entry model, where $A$ is required to have entries bounded by $1$ in absolute value. We give upper and lower bounds for a wide range of problems in this model, and discuss connections to the sensing model above.

We develop an approach to risk minimization and stochastic optimization that provides a convex surrogate for variance, allowing near-optimal and computationally efficient trading between approximation and estimation error. Our approach builds off of techniques for distributionally robust optimization and Owen's empirical likelihood, and we provide a number of finite-sample and asymptotic results characterizing the theoretical performance of the estimator. In particular, we show that our procedure comes with certificates of optimality, achieving (in some scenarios) faster rates of convergence than empirical risk minimization by virtue of automatically balancing bias and variance. We give corroborating empirical evidence showing that in practice, the estimator indeed trades between variance and absolute performance on a training sample, improving out-of-sample (test) performance over standard empirical risk minimization for a number of classification problems.

北京阿比特科技有限公司