亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Myerson's regularity condition of a distribution is a standard assumption in economics. In this paper, we study the complexity of describing a regular distribution within a small statistical distance. Our main result is that $\tilde{\Theta}{(\epsilon^{-0.5})}$ bits are necessary and sufficient to describe a regular distribution with support $[0,1]$ within $\epsilon$ Levy distance. We prove this by showing that we can learn the regular distribution approximately with $\tilde{O}(\epsilon^{-0.5})$ queries to the cumulative density function. As a corollary, we show that the pricing query complexity to learn the class of regular distribution with support $[0,1]$ within $\epsilon$ Levy distance is $\tilde{\Theta}{(\epsilon^{-2.5})}$. To learn the mixture of two regular distributions, $\tilde{\Theta}(\epsilon^{-3})$ pricing queries are required.

相關內容

In this note, we investigate the non-identifiability of the multivariate unified skew-normal distribution under permutation of its latent variables. We show that the non-identifiability issue also holds with other parametrizations and extends to the family of unified skew-elliptical distributions and more generally to selection distibutions. We provide several suggestions to make the unified skew-normal model identifiable and describe various sub-models that are identifiable.

Bayesian deep learning (BDL) is a promising approach to achieve well-calibrated predictions on distribution-shifted data. Nevertheless, there exists no large-scale survey that evaluates recent SOTA methods on diverse, realistic, and challenging benchmark tasks in a systematic manner. To provide a clear picture of the current state of BDL research, we evaluate modern BDL algorithms on real-world datasets from the WILDS collection containing challenging classification and regression tasks, with a focus on generalization capability and calibration under distribution shift. We compare the algorithms on a wide range of large, convolutional and transformer-based neural network architectures. In particular, we investigate a signed version of the expected calibration error that reveals whether the methods are over- or under-confident, providing further insight into the behavior of the methods. Further, we provide the first systematic evaluation of BDL for fine-tuning large pre-trained models, where training from scratch is prohibitively expensive. Finally, given the recent success of Deep Ensembles, we extend popular single-mode posterior approximations to multiple modes by the use of ensembles. While we find that ensembling single-mode approximations generally improves the generalization capability and calibration of the models by a significant margin, we also identify a failure mode of ensembles when finetuning large transformer-based language models. In this setting, variational inference based approaches such as last-layer Bayes By Backprop outperform other methods in terms of accuracy by a large margin, while modern approximate inference algorithms such as SWAG achieve the best calibration.

In this paper, we consider feature screening for ultrahigh dimensional clustering analyses. Based on the observation that the marginal distribution of any given feature is a mixture of its conditional distributions in different clusters, we propose to screen clustering features by independently evaluating the homogeneity of each feature's mixture distribution. Important cluster-relevant features have heterogeneous components in their mixture distributions and unimportant features have homogeneous components. The well-known EM-test statistic is used to evaluate the homogeneity. Under general parametric settings, we establish the tail probability bounds of the EM-test statistic for the homogeneous and heterogeneous features, and further show that the proposed screening procedure can achieve the sure independent screening and even the consistency in selection properties. Limiting distribution of the EM-test statistic is also obtained for general parametric distributions. The proposed method is computationally efficient, can accurately screen for important cluster-relevant features and help to significantly improve clustering, as demonstrated in our extensive simulation and real data analyses.

Given a dataset of $n$ i.i.d. samples from an unknown distribution $P$, we consider the problem of generating a sample from a distribution that is close to $P$ in total variation distance, under the constraint of differential privacy (DP). We study the problem when $P$ is a multi-dimensional Gaussian distribution, under different assumptions on the information available to the DP mechanism: known covariance, unknown bounded covariance, and unknown unbounded covariance. We present new DP sampling algorithms, and show that they achieve near-optimal sample complexity in the first two settings. Moreover, when $P$ is a product distribution on the binary hypercube, we obtain a pure-DP algorithm whereas only an approximate-DP algorithm (with slightly worse sample complexity) was previously known.

The approximate stabilizer rank of a quantum state is the minimum number of terms in any approximate decomposition of that state into stabilizer states. Bravyi and Gosset showed that the approximate stabilizer rank of a so-called "magic" state like $|T\rangle^{\otimes n}$, up to polynomial factors, is an upper bound on the number of classical operations required to simulate an arbitrary quantum circuit with Clifford gates and $n$ number of $T$ gates. As a result, an exponential lower bound on this quantity seems inevitable. Despite this intuition, several attempts using various techniques could not lead to a better than a linear lower bound on the "exact" rank of ${|T\rangle}^{\otimes n}$, meaning the minimal size of a decomposition that exactly produces the state. For the "approximate" rank, which is more realistically related to the cost of simulating quantum circuits, no lower bound better than $\tilde \Omega(\sqrt n)$ has been known. In this paper, we improve the lower bound on the approximate rank to $\tilde \Omega (n^2)$ for a wide range of the approximation parameters. An immediate corollary of our result is the existence of polynomial time computable functions which require a super-linear number of terms in any decomposition into exponentials of quadratic forms over $\mathbb{F}_2$, resolving a question in [Wil18]. Our approach is based on a strong lower bound on the approximate rank of a quantum state sampled from the Haar measure, a step-by-step analysis of the approximate rank of a magic-state teleportation protocol to sample from the Haar measure, and a result about trading Clifford operations with $T$ gates by [LKS18].

Bayesian deep learning (BDL) is a promising approach to achieve well-calibrated predictions on distribution-shifted data. Nevertheless, there exists no large-scale survey that evaluates recent SOTA methods on diverse, realistic, and challenging benchmark tasks in a systematic manner. To provide a clear picture of the current state of BDL research, we evaluate modern BDL algorithms on real-world datasets from the WILDS collection containing challenging classification and regression tasks, with a focus on generalization capability and calibration under distribution shift. We compare the algorithms on a wide range of large, convolutional and transformer-based neural network architectures. In particular, we investigate a signed version of the expected calibration error that reveals whether the methods are over- or under-confident, providing further insight into the behavior of the methods. Further, we provide the first systematic evaluation of BDL for fine-tuning large pre-trained models, where training from scratch is prohibitively expensive. Finally, given the recent success of Deep Ensembles, we extend popular single-mode posterior approximations to multiple modes by the use of ensembles. While we find that ensembling single-mode approximations generally improves the generalization capability and calibration of the models by a significant margin, we also identify a failure mode of ensembles when finetuning large transformer-based language models. In this setting, variational inference based approaches such as last-layer Bayes By Backprop outperform other methods in terms of accuracy by a large margin, while modern approximate inference algorithms such as SWAG achieve the best calibration.

We study FO+, a fragment of first-order logic on finite words, where monadic predicates can only appear positively. We show that there is an FO-definable language that is monotone in monadic predicates but not definable in FO+. This provides a simple proof that Lyndon's preservation theorem fails on finite structures. We lift this example language to finite graphs, thereby providing a new result of independent interest for FO-definable graph classes: negation might be needed even when the class is closed under addition of edges. We finally show that the problem of whether a given regular language of finite words is definable in FO+ is undecidable.

Forecasts of multivariate probability distributions are required for a variety of applications. Scoring rules enable the evaluation of forecast accuracy, and comparison between forecasting methods. We propose a theoretical framework for scoring rules for multivariate distributions, which encompasses the existing quadratic score and multivariate continuous ranked probability score. We demonstrate how this framework can be used to generate new scoring rules. In some multivariate contexts, it is a forecast of a level set that is needed, such as a density level set for anomaly detection or the level set of the cumulative distribution as a measure of risk. This motivates consideration of scoring functions for such level sets. For univariate distributions, it is well-established that the continuous ranked probability score can be expressed as the integral over a quantile score. We show that, in a similar way, scoring rules for multivariate distributions can be decomposed to obtain scoring functions for level sets. Using this, we present scoring functions for different types of level set, including density level sets and level sets for cumulative distributions. To compute the scores, we propose a simple numerical algorithm. We perform a simulation study to support our proposals, and we use real data to illustrate usefulness for forecast combining and CoVaR estimation.

In recent years, promising statistical modeling approaches to tensor data analysis have been rapidly developed. Traditional multivariate analysis tools, such as multivariate regression and discriminant analysis, are generalized from modeling random vectors and matrices to higher-order random tensors. One of the biggest challenges to statistical tensor models is the non-Gaussian nature of many real-world data. Unfortunately, existing approaches are either restricted to normality or implicitly using least squares type objective functions that are computationally efficient but sensitive to data contamination. Motivated by this, we adopt a simple tensor t-distribution that is, unlike the commonly used matrix t-distributions, compatible with tensor operators and reshaping of the data. We study the tensor response regression with tensor t-error, and develop penalized likelihood-based estimation and a novel one-step estimation. We study the asymptotic relative efficiency of various estimators and establish the one-step estimator's oracle properties and near-optimal asymptotic efficiency. We further propose a high-dimensional modification to the one-step estimation procedure and show that it attains the minimax optimal rate in estimation. Numerical studies show the excellent performance of the one-step estimator.

Understanding the effect of a feature vector $x \in \mathbb{R}^d$ on the response value (label) $y \in \mathbb{R}$ is the cornerstone of many statistical learning problems. Ideally, it is desired to understand how a set of collected features combine together and influence the response value, but this problem is notoriously difficult, due to the high-dimensionality of data and limited number of labeled data points, among many others. In this work, we take a new perspective on this problem, and we study the question of assessing the difference of influence that the two given features have on the response value. We first propose a notion of closeness for the influence of features, and show that our definition recovers the familiar notion of the magnitude of coefficients in the parametric model. We then propose a novel method to test for the closeness of influence in general model-free supervised learning problems. Our proposed test can be used with finite number of samples with control on type I error rate, no matter the ground truth conditional law $\mathcal{L}(Y |X)$. We analyze the power of our test for two general learning problems i) linear regression, and ii) binary classification under mixture of Gaussian models, and show that under the proper choice of score function, an internal component of our test, with sufficient number of samples will achieve full statistical power. We evaluate our findings through extensive numerical simulations, specifically we adopt the datamodel framework (Ilyas, et al., 2022) for CIFAR-10 dataset to identify pairs of training samples with different influence on the trained model via optional black box training mechanisms.

北京阿比特科技有限公司