In the rapidly advancing field of multi-agent systems, ensuring robustness in unfamiliar and adversarial settings is crucial. Notwithstanding their outstanding performance in familiar environments, these systems often falter in new situations due to overfitting during the training phase. This is especially pronounced in settings where both cooperative and competitive behaviours are present, encapsulating a dual nature of overfitting and generalisation challenges. To address this issue, we present Multi-Agent Diagnostics for Robustness via Illuminated Diversity (MADRID), a novel approach for generating diverse adversarial scenarios that expose strategic vulnerabilities in pre-trained multi-agent policies. Leveraging the concepts from open-ended learning, MADRID navigates the vast space of adversarial settings, employing a target policy's regret to gauge the vulnerabilities of these settings. We evaluate the effectiveness of MADRID on the 11vs11 version of Google Research Football, one of the most complex environments for multi-agent reinforcement learning. Specifically, we employ MADRID for generating a diverse array of adversarial settings for TiZero, the state-of-the-art approach which "masters" the game through 45 days of training on a large-scale distributed infrastructure. We expose key shortcomings in TiZero's tactical decision-making, underlining the crucial importance of rigorous evaluation in multi-agent systems.
With the rapid advancement of hardware and software technologies, research in autonomous driving has seen significant growth. The prevailing framework for multi-sensor autonomous driving encompasses sensor installation, perception, path planning, decision-making, and motion control. At the perception phase, a common approach involves utilizing neural networks to infer 3D bounding box (Bbox) attributes from raw sensor data, including classification, size, and orientation. In this paper, we present a novel attribute and its corresponding algorithm: 3D object visibility. By incorporating multi-task learning, the introduction of this attribute, visibility, negligibly affects the model's effectiveness and efficiency. Our proposal of this attribute and its computational strategy aims to expand the capabilities for downstream tasks, thereby enhancing the safety and reliability of real-time autonomous driving in real-world scenarios.
Assessing the predictive uncertainty of deep neural networks is crucial for safety-related applications of deep learning. Although Bayesian deep learning offers a principled framework for estimating model uncertainty, the common approaches that approximate the parameter posterior often fail to deliver reliable estimates of predictive uncertainty. In this paper, we propose a novel criterion for reliable predictive uncertainty: a model's predictive variance should be grounded in the empirical density of the input. That is, the model should produce higher uncertainty for inputs that are improbable in the training data and lower uncertainty for inputs that are more probable. To operationalize this criterion, we develop the density uncertainty layer, a stochastic neural network architecture that satisfies the density uncertain criterion by design. We study density uncertainty layers on the UCI and CIFAR-10/100 uncertainty benchmarks. Compared to existing approaches, density uncertainty layers provide more reliable uncertainty estimates and robust out-of-distribution detection performance.
Convex optimization encompasses a wide range of optimization problems, containing many efficiently solvable subclasses. Interior point methods are currently the state-of-the-art approach for solving such problems, particularly effective for classes like semidefinite programming, quadratic programming, and geometric programming. However, their success hinges on the construction of self-concordant barrier functions for the feasible sets. In this work, we introduce an alternative method for tackling convex optimization problems, employing a homotopy. With this technique, the feasible set of a trivial optimization problem is continuously transformed into the target one, while tracking the solutions. We conduct an analysis of this approach, focusing on its application to semidefinite programs, hyperbolic programs, and convex optimization problems with a single convexity constraint. Moreover, we demonstrate that our approach numerically outperforms state-of-the-art methods in several interesting cases.
It remains a significant challenge how to quantitatively control the expressiveness of speech emotion in speech generation. In this work, we present a novel approach for manipulating the rendering of emotions for speech generation. We propose a hierarchical emotion distribution extractor, i.e. Hierarchical ED, that quantifies the intensity of emotions at different levels of granularity. Support vector machines (SVMs) are employed to rank emotion intensity, resulting in a hierarchical emotional embedding. Hierarchical ED is subsequently integrated into the FastSpeech2 framework, guiding the model to learn emotion intensity at phoneme, word, and utterance levels. During synthesis, users can manually edit the emotional intensity of the generated voices. Both objective and subjective evaluations demonstrate the effectiveness of the proposed network in terms of fine-grained quantitative emotion editing.
Advancements in conversational systems have revolutionized information access, surpassing the limitations of single queries. However, developing dialogue systems requires a large amount of training data, which is a challenge in low-resource domains and languages. Traditional data collection methods like crowd-sourcing are labor-intensive and time-consuming, making them ineffective in this context. Data augmentation (DA) is an affective approach to alleviate the data scarcity problem in conversational systems. This tutorial provides a comprehensive and up-to-date overview of DA approaches in the context of conversational systems. It highlights recent advances in conversation augmentation, open domain and task-oriented conversation generation, and different paradigms of evaluating these models. We also discuss current challenges and future directions in order to help researchers and practitioners to further advance the field in this area.
When deploying segmentation models in practice, it is critical to evaluate their behaviors in varied and complex scenes. Different from the previous evaluation paradigms only in consideration of global attribute variations (e.g. adverse weather), we investigate both local and global attribute variations for robustness evaluation. To achieve this, we construct a mask-preserved attribute editing pipeline to edit visual attributes of real images with precise control of structural information. Therefore, the original segmentation labels can be reused for the edited images. Using our pipeline, we construct a benchmark covering both object and image attributes (e.g. color, material, pattern, style). We evaluate a broad variety of semantic segmentation models, spanning from conventional close-set models to recent open-vocabulary large models on their robustness to different types of variations. We find that both local and global attribute variations affect segmentation performances, and the sensitivity of models diverges across different variation types. We argue that local attributes have the same importance as global attributes, and should be considered in the robustness evaluation of segmentation models. Code: //github.com/PRIS-CV/Pascal-EA.
Due to the advantages of fusing information from various modalities, multimodal learning is gaining increasing attention. Being a fundamental task of multimodal learning, Visual Grounding (VG), aims to locate objects in images through natural language expressions. Ensuring the quality of VG models presents significant challenges due to the complex nature of the task. In the black box scenario, existing adversarial testing techniques often fail to fully exploit the potential of both modalities of information. They typically apply perturbations based solely on either the image or text information, disregarding the crucial correlation between the two modalities, which would lead to failures in test oracles or an inability to effectively challenge VG models. To this end, we propose PEELING, a text perturbation approach via image-aware property reduction for adversarial testing of the VG model. The core idea is to reduce the property-related information in the original expression meanwhile ensuring the reduced expression can still uniquely describe the original object in the image. To achieve this, PEELING first conducts the object and properties extraction and recombination to generate candidate property reduction expressions. It then selects the satisfied expressions that accurately describe the original object while ensuring no other objects in the image fulfill the expression, through querying the image with a visual understanding technique. We evaluate PEELING on the state-of-the-art VG model, i.e. OFA-VG, involving three commonly used datasets. Results show that the adversarial tests generated by PEELING achieves 21.4% in MultiModal Impact score (MMI), and outperforms state-of-the-art baselines for images and texts by 8.2%--15.1%.
Rejection sampling methods have recently been proposed to improve the performance of discriminator-based generative models. However, these methods are only optimal under an unlimited sampling budget, and are usually applied to a generator trained independently of the rejection procedure. We first propose an Optimal Budgeted Rejection Sampling (OBRS) scheme that is provably optimal with respect to \textit{any} $f$-divergence between the true distribution and the post-rejection distribution, for a given sampling budget. Second, we propose an end-to-end method that incorporates the sampling scheme into the training procedure to further enhance the model's overall performance. Through experiments and supporting theory, we show that the proposed methods are effective in significantly improving the quality and diversity of the samples.
Episodic memory plays a crucial role in various cognitive processes, such as the ability to mentally recall past events. While cognitive science emphasizes the significance of spatial context in the formation and retrieval of episodic memory, the current primary approach to implementing episodic memory in AI systems is through transformers that store temporally ordered experiences, which overlooks the spatial dimension. As a result, it is unclear how the underlying structure could be extended to incorporate the spatial axis beyond temporal order alone and thereby what benefits can be obtained. To address this, this paper explores the use of Spatially-Aware Transformer models that incorporate spatial information. These models enable the creation of place-centric episodic memory that considers both temporal and spatial dimensions. Adopting this approach, we demonstrate that memory utilization efficiency can be improved, leading to enhanced accuracy in various place-centric downstream tasks. Additionally, we propose the Adaptive Memory Allocator, a memory management method based on reinforcement learning that aims to optimize efficiency of memory utilization. Our experiments demonstrate the advantages of our proposed model in various environments and across multiple downstream tasks, including prediction, generation, reasoning, and reinforcement learning. The source code for our models and experiments will be available at //github.com/junmokane/spatially-aware-transformer.
With the explosive growth of information technology, multi-view graph data have become increasingly prevalent and valuable. Most existing multi-view clustering techniques either focus on the scenario of multiple graphs or multi-view attributes. In this paper, we propose a generic framework to cluster multi-view attributed graph data. Specifically, inspired by the success of contrastive learning, we propose multi-view contrastive graph clustering (MCGC) method to learn a consensus graph since the original graph could be noisy or incomplete and is not directly applicable. Our method composes of two key steps: we first filter out the undesirable high-frequency noise while preserving the graph geometric features via graph filtering and obtain a smooth representation of nodes; we then learn a consensus graph regularized by graph contrastive loss. Results on several benchmark datasets show the superiority of our method with respect to state-of-the-art approaches. In particular, our simple approach outperforms existing deep learning-based methods.