We present a stochastic method for efficiently computing the solution of time-fractional partial differential equations (fPDEs) that model anomalous diffusion problems of the subdiffusive type. After discretizing the fPDE in space, the ensuing system of fractional linear equations is solved resorting to a Monte Carlo evaluation of the corresponding Mittag-Leffler matrix function. This is accomplished through the approximation of the expected value of a suitable multiplicative functional of a stochastic process, which consists of a Markov chain whose sojourn times in every state are Mittag-Leffler distributed. The resulting algorithm is able to calculate the solution at conveniently chosen points in the domain with high efficiency. In addition, we present how to generalize this algorithm in order to compute the complete solution. For several large-scale numerical problems, our method showed remarkable performance in both shared-memory and distributed-memory systems, achieving nearly perfect scalability up to 16,384 CPU cores.
This paper proposed a novel radial basis function neural network (RBFNN) to solve various partial differential equations (PDEs). In the proposed RBF neural networks, the physics-informed kernel functions (PIKFs), which are derived according to the governing equations of the considered PDEs, are used to be the activation functions instead of the traditional RBFs. Similar to the well-known physics-informed neural networks (PINNs), the proposed physics-informed kernel function neural networks (PIKFNNs) also include the physical information of the considered PDEs in the neural network. The difference is that the PINNs put this physical information in the loss function, and the proposed PIKFNNs put the physical information of the considered governing equations in the activation functions. By using the derived physics-informed kernel functions satisfying the considered governing equations of homogeneous, nonhomogeneous, transient PDEs as the activation functions, only the boundary/initial data are required to train the neural network. Finally, the feasibility and accuracy of the proposed PIKFNNs are validated by several benchmark examples referred to high-wavenumber wave propagation problem, infinite domain problem, nonhomogeneous problem, long-time evolution problem, inverse problem, spatial structural derivative diffusion model, and so on.
The numerical evaluation of statistics plays a crucial role in statistical physics and its applied fields. It is possible to evaluate the statistics for a stochastic differential equation with Gaussian white noise via the corresponding backward Kolmogorov equation. The important notice is that there is no need to obtain the solution of the backward Kolmogorov equation on the whole domain; it is enough to evaluate a value of the solution at a certain point that corresponds to the initial coordinate for the stochastic differential equation. For this aim, an algorithm based on combinatorics has recently been developed. In this paper, we discuss a higher-order approximation of resolvent, and an algorithm based on a second-order approximation is proposed. The proposed algorithm shows a second-order convergence. Furthermore, the convergence property of the naive algorithms naturally leads to extrapolation methods; they work well to calculate a more accurate value with fewer computational costs. The proposed method is demonstrated with the Ornstein-Uhlenbeck process and the noisy van der Pol system.
This paper introduces a numerical approach to solve singularly perturbed convection diffusion boundary value problems for second-order ordinary differential equations that feature a small positive parameter {\epsilon} multiplying the highest derivative. We specifically examine Dirichlet boundary conditions. To solve this differential equation, we propose an upwind finite difference method and incorporate the Shishkin mesh scheme to capture the solution near boundary layers. Our solver is both direct and of high accuracy, with computation time that scales linearly with the number of grid points. MATLAB code of the numerical recipe is made publicly available. We present numerical results to validate the theoretical results and assess the accuracy of our method. The tables and graphs included in this paper demonstrate the numerical outcomes, which indicate that our proposed method offers a highly accurate approximation of the exact solution.
In this article, we propose numerical scheme for solving a multi-term time-fractional nonlocal parabolic partial differential equation (PDE). The scheme comprises $L2$-$1_{\sigma}$ scheme on a graded mesh in time and Galerkin finite element method (FEM) in space. We present the discrete fractional Gr$\ddot{{o}}$nwall inequality for $L2$-$1_{\sigma}$ scheme in case of multi-term time-fractional derivative, which is a multi-term analogue of~\cite[Lemma 4.1]{[r16]}. We derive \textit{a priori} bound and error estimate for the fully-discrete solution. The theoretical results are confirmed via numerical experiments. We should note that, though the way of proving the discrete fractional Gr$\ddot{{o}}$nwall inequality is similar to~\cite{[r5]}, the calculation parts are more complicated in this article.
In this work, a time-fractional nonlocal diffusion equation is considered. Based on the $L2$-$1_{\sigma}$ scheme on a graded mesh in time and the standard finite element method (FEM) in space, the fully-discrete $L2$-$1_{\sigma}$ finite element method is investigated for a time-fractional nonlocal diffusion problem. We prove the existence and uniqueness of fully-discrete solution. The $\alpha$-robust error bounds are derived, i.e. bounds remain valid as $\alpha$ $\rightarrow {1}^{-},$ where $\alpha \ \in (0,1)$ is the order of a temporal fractional derivative. The numerical experiments are presented to justify the theoretical findings.
Quantum algorithms for optimization problems are of general interest. Despite recent progress in classical lower bounds for nonconvex optimization under different settings and quantum lower bounds for convex optimization, quantum lower bounds for nonconvex optimization are still widely open. In this paper, we conduct a systematic study of quantum query lower bounds on finding $\epsilon$-approximate stationary points of nonconvex functions, and we consider the following two important settings: 1) having access to $p$-th order derivatives; or 2) having access to stochastic gradients. The classical query lower bounds is $\Omega\big(\epsilon^{-\frac{1+p}{p}}\big)$ regarding the first setting, and $\Omega(\epsilon^{-4})$ regarding the second setting (or $\Omega(\epsilon^{-3})$ if the stochastic gradient function is mean-squared smooth). In this paper, we extend all these classical lower bounds to the quantum setting. They match the classical algorithmic results respectively, demonstrating that there is no quantum speedup for finding $\epsilon$-stationary points of nonconvex functions with $p$-th order derivative inputs or stochastic gradient inputs, whether with or without the mean-squared smoothness assumption. Technically, our quantum lower bounds are obtained by showing that the sequential nature of classical hard instances in all these settings also applies to quantum queries, preventing any quantum speedup other than revealing information of the stationary points sequentially.
In this paper, we investigate the theoretical properties of stochastic gradient descent (SGD) for statistical inference in the context of nonconvex optimization problems, which have been relatively unexplored compared to convex settings. Our study is the first to establish provable inferential procedures using the SGD estimator for general nonconvex objective functions, which may contain multiple local minima. We propose two novel online inferential procedures that combine SGD and the multiplier bootstrap technique. The first procedure employs a consistent covariance matrix estimator, and we establish its error convergence rate. The second procedure approximates the limit distribution using bootstrap SGD estimators, yielding asymptotically valid bootstrap confidence intervals. We validate the effectiveness of both approaches through numerical experiments. Furthermore, our analysis yields an intermediate result: the in-expectation error convergence rate for the original SGD estimator in nonconvex settings, which is comparable to existing results for convex problems. We believe this novel finding holds independent interest and enriches the literature on optimization and statistical inference.
Gaussian processes (GPs) based methods for solving partial differential equations (PDEs) demonstrate great promise by bridging the gap between the theoretical rigor of traditional numerical algorithms and the flexible design of machine learning solvers. The main bottleneck of GP methods lies in the inversion of a covariance matrix, whose cost grows cubically concerning the size of samples. Drawing inspiration from neural networks, we propose a mini-batch algorithm combined with GPs to solve nonlinear PDEs. The algorithm takes a mini-batch of samples at each step to update the GP model. Thus, the computational cost is allotted to each iteration. Using stability analysis and convexity arguments, we show that the mini-batch method steadily reduces a natural measure of errors towards zero at the rate of O(1/K + 1/M), where K is the number of iterations and M is the batch size. Numerical results show that smooth problems benefit from a small batch size, while less regular problems require careful sample selection for optimal accuracy.
Stability and optimal convergence analysis of a non-uniform implicit-explicit L1 finite element method (IMEX-L1-FEM) is studied for a class of time-fractional linear partial differential/integro-differential equations with non-self-adjoint elliptic part having (space-time) variable coefficients. The proposed scheme is based on a combination of an IMEX-L1 method on graded mesh in the temporal direction and a finite element method in the spatial direction. With the help of a discrete fractional Gr\"{o}nwall inequality, optimal error estimates in $L^2$- and $H^1$-norms are derived for the problem with initial data $u_0 \in H_0^1(\Omega)\cap H^2(\Omega)$. Under higher regularity condition $u_0 \in \dot{H}^3(\Omega)$, a super convergence result is established and as a consequence, $L^\infty$ error estimate is obtained for 2D problems. Numerical experiments are presented to validate our theoretical findings.
The conjoining of dynamical systems and deep learning has become a topic of great interest. In particular, neural differential equations (NDEs) demonstrate that neural networks and differential equation are two sides of the same coin. Traditional parameterised differential equations are a special case. Many popular neural network architectures, such as residual networks and recurrent networks, are discretisations. NDEs are suitable for tackling generative problems, dynamical systems, and time series (particularly in physics, finance, ...) and are thus of interest to both modern machine learning and traditional mathematical modelling. NDEs offer high-capacity function approximation, strong priors on model space, the ability to handle irregular data, memory efficiency, and a wealth of available theory on both sides. This doctoral thesis provides an in-depth survey of the field. Topics include: neural ordinary differential equations (e.g. for hybrid neural/mechanistic modelling of physical systems); neural controlled differential equations (e.g. for learning functions of irregular time series); and neural stochastic differential equations (e.g. to produce generative models capable of representing complex stochastic dynamics, or sampling from complex high-dimensional distributions). Further topics include: numerical methods for NDEs (e.g. reversible differential equations solvers, backpropagation through differential equations, Brownian reconstruction); symbolic regression for dynamical systems (e.g. via regularised evolution); and deep implicit models (e.g. deep equilibrium models, differentiable optimisation). We anticipate this thesis will be of interest to anyone interested in the marriage of deep learning with dynamical systems, and hope it will provide a useful reference for the current state of the art.