亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this work, a time-fractional nonlocal diffusion equation is considered. Based on the $L2$-$1_{\sigma}$ scheme on a graded mesh in time and the standard finite element method (FEM) in space, the fully-discrete $L2$-$1_{\sigma}$ finite element method is investigated for a time-fractional nonlocal diffusion problem. We prove the existence and uniqueness of fully-discrete solution. The $\alpha$-robust error bounds are derived, i.e. bounds remain valid as $\alpha$ $\rightarrow {1}^{-},$ where $\alpha \ \in (0,1)$ is the order of a temporal fractional derivative. The numerical experiments are presented to justify the theoretical findings.

相關內容

In this work we consider the two dimensional instationary Navier-Stokes equations with homogeneous Dirichlet/no-slip boundary conditions. We show error estimates for the fully discrete problem, where a discontinuous Galerkin method in time and inf-sup stable finite elements in space are used. Recently, best approximation type error estimates for the Stokes problem in the $L^\infty(I;L^2(\Omega))$, $L^2(I;H^1(\Omega))$ and $L^2(I;L^2(\Omega))$ norms have been shown. The main result of the present work extends the error estimate in the $L^\infty(I;L^2(\Omega))$ norm to the Navier-Stokes equations, by pursuing an error splitting approach and an appropriate duality argument. In order to discuss the stability of solutions to the discrete primal and dual equations, a specialized discrete Gronwall lemma is presented. The techniques developed towards showing the $L^\infty(I;L^2(\Omega))$ error estimate, also allow us to show best approximation type error estimates in the $L^2(I;H^1(\Omega))$ and $L^2(I;L^2(\Omega))$ norms, which complement this work.

In this paper we propose a numerical method to solve a 2D advection-diffusion equation, in the highly oscillatory regime. We use an efficient and robust integrator which leads to an accurate approximation of the solution without any time step-size restriction. Uniform first and second order numerical approximations in time are obtained with errors, and at a cost, that are independent of the oscillation frequency. {This work is part of a long time project, and the final goal is the resolution of a Stokes-advection-diffusion system, in which the expression for the velocity in the advection term, is the solution of the Stokes equations.} This paper focuses on the time multiscale challenge, coming from the velocity that is an $\varepsilon-$periodic function, whose expression is explicitly known. We also introduce a two--scale formulation, as a first step to the numerical resolution of the complete oscillatory Stokes-advection-diffusion system, that is currently under investigation. This two--scale formulation is also useful to understand the asymptotic behaviour of the solution.

The nonlocal Allen-Cahn equation with nonlocal diffusion operator is a generalization of the classical Allen-Cahn equation. It satisfies the energy dissipation law and maximum bound principle (MBP), and is important for simulating a series of physical and biological phenomena involving long-distance interactions in space. In this paper, we construct first- and second-order (in time) accurate, unconditionally energy stable and MBP-preserving schemes for the nonlocal Allen-Cahn type model based on the stabilized exponential scalar auxiliary variable (sESAV) approach. On the one hand, we have proved the MBP and unconditional energy stability carefully and rigorously in the fully discrete levels. On the other hand, we adopt an efficient FFT-based fast solver to compute the nearly full coefficient matrix generated from the spatial discretization, which improves the computational efficiency. Finally, typical numerical experiments are presented to demonstrate the performance of our proposed schemes.

The nonlocal Cahn-Hilliard (NCH) equation with nonlocal diffusion operator is more suitable for the simulation of microstructure phase transition than the local Cahn-Hilliard (LCH) equation. In this paper, based on the exponential semi-implicit scalar auxiliary variable (ESI-SAV) method, the highly effcient and accurate schemes in time with unconditional energy stability for solving the NCH equation are proposed. On the one hand, we have demostrated the unconditional energy stability for the NCH equation with its high-order semi-discrete schemes carefully and rigorously. On the other hand, in order to reduce the calculation and storage cost in numerical simulation, we use the fast solver based on FFT and FCG for spatial discretization. Some numerical simulations involving the Gaussian kernel are presented and show the stability, accuracy, efficiency and unconditional energy stability of the proposed schemes.

In this paper we propose a method to approximate the Gaussian function on ${\mathbb R}$ by a short cosine sum. We extend the differential approximation method proposed in [4,39] to approximate $\mathrm{e}^{-t^{2}/2\sigma}$ in the weighted space $L_2({\mathbb R}, \mathrm{e}^{-t^{2}/2\rho})$ where $\sigma, \, \rho >0$. We prove that the optimal frequency parameters $\lambda_1, \ldots , \lambda_{N}$ for this method in the approximation problem $ \min\limits_{\lambda_{1},\ldots, \lambda_{N}, \gamma_{1} \ldots \gamma_{N}}\|\mathrm{e}^{-\cdot^{2}/2\sigma} - \sum\limits_{j=1}^{N} \gamma_{j} \, {\mathrm e}^{\lambda_{j} \cdot}\|_{L_{2}({\mathbb R}, \mathrm{e}^{-t^{2}/2\rho})}$, are zeros of a scaled Hermite polynomial. This observation leads us to a numerically stable approximation method with low computational cost of $\mathit{O}(N^{3})$ operations. Furthermore, we derive a direct algorithm to solve this approximation problem based on a matrix pencil method for a special structured matrix. The entries of this matrix are determined by hypergeometric functions. For the weighted $L_{2}$-norm, we prove that the approximation error decays exponentially with respect to the length $N$ of the sum. An exponentially decaying error in the (unweighted) $L^{2}$-norm is achieved using a truncated cosine sum.

The $k$-tensor Ising model is an exponential family on a $p$-dimensional binary hypercube for modeling dependent binary data, where the sufficient statistic consists of all $k$-fold products of the observations, and the parameter is an unknown $k$-fold tensor, designed to capture higher-order interactions between the binary variables. In this paper, we describe an approach based on a penalization technique that helps us recover the signed support of the tensor parameter with high probability, assuming that no entry of the true tensor is too close to zero. The method is based on an $\ell_1$-regularized node-wise logistic regression, that recovers the signed neighborhood of each node with high probability. Our analysis is carried out in the high-dimensional regime, that allows the dimension $p$ of the Ising model, as well as the interaction factor $k$ to potentially grow to $\infty$ with the sample size $n$. We show that if the minimum interaction strength is not too small, then consistent recovery of the entire signed support is possible if one takes $n = \Omega((k!)^8 d^3 \log \binom{p-1}{k-1})$ samples, where $d$ denotes the maximum degree of the hypernetwork in question. Our results are validated in two simulation settings, and applied on a real neurobiological dataset consisting of multi-array electro-physiological recordings from the mouse visual cortex, to model higher-order interactions between the brain regions.

This paper considers the Cauchy problem for the nonlinear dynamic string equation of Kirchhoff-type with time-varying coefficients. The objective of this work is to develop a temporal discretization algorithm capable of approximating a solution to this initial-boundary value problem. To this end, a symmetric three-layer semi-discrete scheme is employed with respect to the temporal variable, wherein the value of a nonlinear term is evaluated at the middle node point. This approach enables the numerical solutions per temporal step to be obtained by inverting the linear operators, yielding a system of second-order linear ordinary differential equations. Local convergence of the proposed scheme is established, and it achieves quadratic convergence concerning the step size of the discretization of time on the local temporal interval. We have conducted several numerical experiments using the proposed algorithm for various test problems to validate its performance. It can be said that the obtained numerical results are in accordance with the theoretical findings.

We propose a monotone discretization method for obstacle problems involving the integral fractional Laplacian with homogeneous Dirichlet boundary conditions over a bounded Lipschitz domain. Our approach is motivated by the success of the monotone discretization of the fractional Laplacian [SIAM J. Numer. Anal. 60(6), pp. 3052-3077, 2022]. By exploiting the problem's unique structure, we establish the uniform boundedness, existence, and uniqueness of the numerical solutions. Moreover, we employ the policy iteration method to efficiently solve discrete nonlinear problems and prove its convergence after a finite number of iterations. The improved policy iteration, adapted to the regularity result, exhibits superior performance by modifying the discretization in different regions. Several numerical examples are provided to illustrate the effectiveness of our method.

A numerical procedure providing guaranteed two-sided bounds on the effective coefficients of elliptic partial differential operators is presented. The upper bounds are obtained in a standard manner through the variational formulation of the problem and by applying the finite element method. To obtain the lower bounds we formulate the dual variational problem and introduce appropriate approximation spaces employing the finite element method as well. We deal with the 3D setting, which has been rarely considered in the literature so far. The theoretical justification of the procedure is presented and supported with illustrative examples.

In this work, we propose a simple numerical scheme based on a fast front-tracking approach for solving a fluid-structure interaction (FSI) problem of plaque growth in blood vessels. A rigorous error analysis is carried out for the temporal semi-discrete scheme to show that it is first-order accurate for all macro time step $\Delta T$, micro time step $\Delta t$ and scale parameter $\epsilon$. A numerical example is presented to verify the theoretical results and demonstrate the excellent performance of the proposed multiscale algorithm.

北京阿比特科技有限公司