The $k$-tensor Ising model is an exponential family on a $p$-dimensional binary hypercube for modeling dependent binary data, where the sufficient statistic consists of all $k$-fold products of the observations, and the parameter is an unknown $k$-fold tensor, designed to capture higher-order interactions between the binary variables. In this paper, we describe an approach based on a penalization technique that helps us recover the signed support of the tensor parameter with high probability, assuming that no entry of the true tensor is too close to zero. The method is based on an $\ell_1$-regularized node-wise logistic regression, that recovers the signed neighborhood of each node with high probability. Our analysis is carried out in the high-dimensional regime, that allows the dimension $p$ of the Ising model, as well as the interaction factor $k$ to potentially grow to $\infty$ with the sample size $n$. We show that if the minimum interaction strength is not too small, then consistent recovery of the entire signed support is possible if one takes $n = \Omega((k!)^8 d^3 \log \binom{p-1}{k-1})$ samples, where $d$ denotes the maximum degree of the hypernetwork in question. Our results are validated in two simulation settings, and applied on a real neurobiological dataset consisting of multi-array electro-physiological recordings from the mouse visual cortex, to model higher-order interactions between the brain regions.
Let $S_{p,n}$ denote the sample covariance matrix based on $n$ independent identically distributed $p$-dimensional random vectors in the null-case. The main result of this paper is an explicit expansion of trace moments and power-trace covariances of $S_{p,n}$ simultaneously for both high- and low-dimensional data. To this end we expand a well-known ansatz of describing trace moments as weighted sums over routes or graphs. The novelty to our approach is an inherent coloring of the examined graphs and a decomposition of graphs into their tree-structure and their \textit{seed graphs}, which allows for some elegant formulas explaining the effect of the tree structures on the number of Euler-tours. The weighted sums over graphs become weighted sums over the possible seed graphs, which in turn are much easier to analyze.
We consider nonconvex-concave minimax problems, $\min_{\mathbf{x}} \max_{\mathbf{y} \in \mathcal{Y}} f(\mathbf{x}, \mathbf{y})$, where $f$ is nonconvex in $\mathbf{x}$ but concave in $\mathbf{y}$ and $\mathcal{Y}$ is a convex and bounded set. One of the most popular algorithms for solving this problem is the celebrated gradient descent ascent (GDA) algorithm, which has been widely used in machine learning, control theory and economics. Despite the extensive convergence results for the convex-concave setting, GDA with equal stepsize can converge to limit cycles or even diverge in a general setting. In this paper, we present the complexity results on two-time-scale GDA for solving nonconvex-concave minimax problems, showing that the algorithm can find a stationary point of the function $\Phi(\cdot) := \max_{\mathbf{y} \in \mathcal{Y}} f(\cdot, \mathbf{y})$ efficiently. To the best our knowledge, this is the first nonasymptotic analysis for two-time-scale GDA in this setting, shedding light on its superior practical performance in training generative adversarial networks (GANs) and other real applications.
We develop models to classify desirable reasoning revisions in argumentative writing. We explore two approaches -- multi-task learning and transfer learning -- to take advantage of auxiliary sources of revision data for similar tasks. Results of intrinsic and extrinsic evaluations show that both approaches can indeed improve classifier performance over baselines. While multi-task learning shows that training on different sources of data at the same time may improve performance, transfer-learning better represents the relationship between the data.
The integer complexity $f(n)$ of a positive integer $n$ is defined as the minimum number of 1's needed to represent $n$, using additions, multiplications and parentheses. We present two simple and faster algorithms for computing the integer complexity: 1) A near-optimal $O(N\mathop{\mathrm{polylog}} N)$-time algorithm for computing the integer complexity of all $n\leq N$, improving the previous $O(N^{1.223})$ one [Cordwell et al., 2017]. 2) The first sublinear-time algorithm for computing the integer complexity of a single $n$, with running time $O(n^{0.6154})$. The previous algorithms for computing a single $f(n)$ require computing all $f(1),\dots,f(n)$.
Until high-fidelity quantum computers with a large number of qubits become widely available, classical simulation remains a vital tool for algorithm design, tuning, and validation. We present a simulator for the Quantum Approximate Optimization Algorithm (QAOA). Our simulator is designed with the goal of reducing the computational cost of QAOA parameter optimization and supports both CPU and GPU execution. Our central observation is that the computational cost of both simulating the QAOA state and computing the QAOA objective to be optimized can be reduced by precomputing the diagonal Hamiltonian encoding the problem. We reduce the time for a typical QAOA parameter optimization by eleven times for $n = 26$ qubits compared to a state-of-the-art GPU quantum circuit simulator based on cuQuantum. Our simulator is available on GitHub: //github.com/jpmorganchase/QOKit
Let $n$ be the size of a parameterized problem and $k$ the parameter. We present several kernels whose sizes are all polynomial in $k$ and that are computable in polynomial time and with $O(\rm{poly}(k) \log n)$ bits (of working memory). Our main result is such a kernel for Feedback Vertex Set. In addition, we present full kernels for Path Contraction and Cluster Editing/Deletion. By using kernel cascades, we obtain the best known kernels in polynomial time with $O(\rm{poly}(k) \log n)$ bits.
The objective of generative model inversion is to identify a size-$n$ latent vector that produces a generative model output that closely matches a given target. This operation is a core computational primitive in numerous modern applications involving computer vision and NLP. However, the problem is known to be computationally challenging and NP-hard in the worst case. This paper aims to provide a fine-grained view of the landscape of computational hardness for this problem. We establish several new hardness lower bounds for both exact and approximate model inversion. In exact inversion, the goal is to determine whether a target is contained within the range of a given generative model. Under the strong exponential time hypothesis (SETH), we demonstrate that the computational complexity of exact inversion is lower bounded by $\Omega(2^n)$ via a reduction from $k$-SAT; this is a strengthening of known results. For the more practically relevant problem of approximate inversion, the goal is to determine whether a point in the model range is close to a given target with respect to the $\ell_p$-norm. When $p$ is a positive odd integer, under SETH, we provide an $\Omega(2^n)$ complexity lower bound via a reduction from the closest vectors problem (CVP). Finally, when $p$ is even, under the exponential time hypothesis (ETH), we provide a lower bound of $2^{\Omega (n)}$ via a reduction from Half-Clique and Vertex-Cover.
Current models for event causality identification (ECI) mainly adopt a supervised framework, which heavily rely on labeled data for training. Unfortunately, the scale of current annotated datasets is relatively limited, which cannot provide sufficient support for models to capture useful indicators from causal statements, especially for handing those new, unseen cases. To alleviate this problem, we propose a novel approach, shortly named CauSeRL, which leverages external causal statements for event causality identification. First of all, we design a self-supervised framework to learn context-specific causal patterns from external causal statements. Then, we adopt a contrastive transfer strategy to incorporate the learned context-specific causal patterns into the target ECI model. Experimental results show that our method significantly outperforms previous methods on EventStoryLine and Causal-TimeBank (+2.0 and +3.4 points on F1 value respectively).
We introduce a generic framework that reduces the computational cost of object detection while retaining accuracy for scenarios where objects with varied sizes appear in high resolution images. Detection progresses in a coarse-to-fine manner, first on a down-sampled version of the image and then on a sequence of higher resolution regions identified as likely to improve the detection accuracy. Built upon reinforcement learning, our approach consists of a model (R-net) that uses coarse detection results to predict the potential accuracy gain for analyzing a region at a higher resolution and another model (Q-net) that sequentially selects regions to zoom in. Experiments on the Caltech Pedestrians dataset show that our approach reduces the number of processed pixels by over 50% without a drop in detection accuracy. The merits of our approach become more significant on a high resolution test set collected from YFCC100M dataset, where our approach maintains high detection performance while reducing the number of processed pixels by about 70% and the detection time by over 50%.
Traditional methods for link prediction can be categorized into three main types: graph structure feature-based, latent feature-based, and explicit feature-based. Graph structure feature methods leverage some handcrafted node proximity scores, e.g., common neighbors, to estimate the likelihood of links. Latent feature methods rely on factorizing networks' matrix representations to learn an embedding for each node. Explicit feature methods train a machine learning model on two nodes' explicit attributes. Each of the three types of methods has its unique merits. In this paper, we propose SEAL (learning from Subgraphs, Embeddings, and Attributes for Link prediction), a new framework for link prediction which combines the power of all the three types into a single graph neural network (GNN). GNN is a new type of neural network which directly accepts graphs as input and outputs their labels. In SEAL, the input to the GNN is a local subgraph around each target link. We prove theoretically that our local subgraphs also reserve a great deal of high-order graph structure features related to link existence. Another key feature is that our GNN can naturally incorporate latent features and explicit features. It is achieved by concatenating node embeddings (latent features) and node attributes (explicit features) in the node information matrix for each subgraph, thus combining the three types of features to enhance GNN learning. Through extensive experiments, SEAL shows unprecedentedly strong performance against a wide range of baseline methods, including various link prediction heuristics and network embedding methods.