In this work we consider the two dimensional instationary Navier-Stokes equations with homogeneous Dirichlet/no-slip boundary conditions. We show error estimates for the fully discrete problem, where a discontinuous Galerkin method in time and inf-sup stable finite elements in space are used. Recently, best approximation type error estimates for the Stokes problem in the $L^\infty(I;L^2(\Omega))$, $L^2(I;H^1(\Omega))$ and $L^2(I;L^2(\Omega))$ norms have been shown. The main result of the present work extends the error estimate in the $L^\infty(I;L^2(\Omega))$ norm to the Navier-Stokes equations, by pursuing an error splitting approach and an appropriate duality argument. In order to discuss the stability of solutions to the discrete primal and dual equations, a specialized discrete Gronwall lemma is presented. The techniques developed towards showing the $L^\infty(I;L^2(\Omega))$ error estimate, also allow us to show best approximation type error estimates in the $L^2(I;H^1(\Omega))$ and $L^2(I;L^2(\Omega))$ norms, which complement this work.
In PDE-constrained optimization, one aims to find design parameters that minimize some objective, subject to the satisfaction of a partial differential equation. A major challenges is computing gradients of the objective to the design parameters, as applying the chain rule requires computing the Jacobian of the design parameters to the PDE's state. The adjoint method avoids this Jacobian by computing partial derivatives of a Lagrangian. Evaluating these derivatives requires the solution of a second PDE with the adjoint differential operator to the constraint, resulting in a backwards-in-time simulation. Particle-based Monte Carlo solvers are often used to compute the solution to high-dimensional PDEs. However, such solvers have the drawback of introducing noise to the computed results, thus requiring stochastic optimization methods. To guarantee convergence in this setting, both the constraint and adjoint Monte Carlo simulations should simulate the same particle trajectories. For large simulations, storing full paths from the constraint equation for re-use in the adjoint equation becomes infeasible due to memory limitations. In this paper, we provide a reversible extension to the family of permuted congruential pseudorandom number generators (PCG). We then use such a generator to recompute these time-reversed paths for the heat equation, avoiding these memory issues.
Anomalous diffusion in the presence or absence of an external force field is often modelled in terms of the fractional evolution equations, which can involve the hyper-singular source term. For this case, conventional time stepping methods may exhibit a severe order reduction. Although a second-order numerical algorithm is provided for the subdiffusion model with a simple hyper-singular source term $t^{\mu}$, $-2<\mu<-1$ in [arXiv:2207.08447], the convergence analysis remain to be proved. To fill in these gaps, we present a simple and robust smoothing method for the hyper-singular source term, where the Hadamard finite-part integral is introduced. This method is based on the smoothing/ID$m$-BDF$k$ method proposed by the authors [Shi and Chen, SIAM J. Numer. Anal., to appear] for subdiffusion equation with a weakly singular source term. We prove that the $k$th-order convergence rate can be restored for the diffusion-wave case $\gamma \in (1,2)$ and sketch the proof for the subdiffusion case $\gamma \in (0,1)$, even if the source term is hyper-singular and the initial data is not compatible. Numerical experiments are provided to confirm the theoretical results.
In this work, we present a positivity-preserving adaptive filtering approach for discontinuous spectral element approximations of the ideal magnetohydrodynamics equations. This approach combines the entropy filtering method (Dzanic and Witherden, J. Comput. Phys., 468, 2022) for shock capturing in gas dynamics along with the eight-wave method for enforcing a divergence-free magnetic field. Due to the inclusion of non-conservative source terms, an operator-splitting approach is introduced to ensure that the positivity and entropy constraints remain satisfied by the discrete solution. Furthermore, a computationally efficient algorithm for solving the optimization process for this nonlinear filtering approach is presented. The resulting scheme can robustly resolve strong discontinuities on general unstructured grids without tunable parameters while recovering high-order accuracy for smooth solutions. The efficacy of the scheme is shown in numerical experiments on various problems including extremely magnetized blast waves and three-dimensional magnetohydrodynamic instabilities.
We introduce a family of high-order time semi-discretizations for semilinear wave equations of Klein--Gordon type with arbitrary smooth nonlinerities that are uniformly accurate in the non-relativistic limit where the speed of light goes to infinity. Our schemes do not require pre-computations that are specific to the nonlinearity and have no restrictions in step size. Instead, they rely upon a general oscillatory quadrature rule developed in a previous paper (Mohamad and Oliver, arXiv:1909.04616).
With the goal of obtaining strong relaxations for binary polynomial optimization problems, we introduce the pseudo-Boolean polytope defined as the convex hull of the set of binary points satisfying a collection of equations containing pseudo-Boolean functions. By representing the pseudo-Boolean polytope via a signed hypergraph, we obtain sufficient conditions under which this polytope has a polynomial-size extended formulation. Our new framework unifies and extends all prior results on the existence of polynomial-size extended formulations for the convex hull of the feasible region of binary polynomial optimization problems of degree at least three.
Solving multiphysics-based inverse problems for geological carbon storage monitoring can be challenging when multimodal time-lapse data are expensive to collect and costly to simulate numerically. We overcome these challenges by combining computationally cheap learned surrogates with learned constraints. Not only does this combination lead to vastly improved inversions for the important fluid-flow property, permeability, it also provides a natural platform for inverting multimodal data including well measurements and active-source time-lapse seismic data. By adding a learned constraint, we arrive at a computationally feasible inversion approach that remains accurate. This is accomplished by including a trained deep neural network, known as a normalizing flow, which forces the model iterates to remain in-distribution, thereby safeguarding the accuracy of trained Fourier neural operators that act as surrogates for the computationally expensive multiphase flow simulations involving partial differential equation solves. By means of carefully selected experiments, centered around the problem of geological carbon storage, we demonstrate the efficacy of the proposed constrained optimization method on two different data modalities, namely time-lapse well and time-lapse seismic data. While permeability inversions from both these two modalities have their pluses and minuses, their joint inversion benefits from either, yielding valuable superior permeability inversions and CO2 plume predictions near, and far away, from the monitoring wells.
This paper introduces novel bulk-surface splitting schemes of first and second order for the wave equation with kinetic and acoustic boundary conditions of semi-linear type. For kinetic boundary conditions, we propose a reinterpretation of the system equations as a coupled system. This means that the bulk and surface dynamics are modeled separately and connected through a coupling constraint. This allows the implementation of splitting schemes, which show first-order convergence in numerical experiments. On the other hand, acoustic boundary conditions naturally separate bulk and surface dynamics. Here, Lie and Strang splitting schemes reach first- and second-order convergence, respectively, as we reveal numerically.
Invariant finite-difference schemes for the one-dimensional shallow water equations in the presence of a magnetic field for various bottom topographies are constructed. Based on the results of the group classification recently carried out by the authors, finite-difference analogues of the conservation laws of the original differential model are obtained. Some typical problems are considered numerically, for which a comparison is made between the cases of a magnetic field presence and when it is absent (the standard shallow water model). The invariance of difference schemes in Lagrangian coordinates and the energy preservation on the obtained numerical solutions are also discussed.
In this paper we introduce a multilevel Picard approximation algorithm for semilinear parabolic partial integro-differential equations (PIDEs). We prove that the numerical approximation scheme converges to the unique viscosity solution of the PIDE under consideration. To that end, we derive a Feynman-Kac representation for the unique viscosity solution of the semilinear PIDE, extending the classical Feynman-Kac representation for linear PIDEs. Furthermore, we show that the algorithm does not suffer from the curse of dimensionality, i.e. the computational complexity of the algorithm is bounded polynomially in the dimension $d$ and the reciprocal of the prescribed accuracy $\varepsilon$. We also provide a numerical example in up to 10'000 dimensions to demonstrate its applicability.
We study a finite volume scheme approximating a parabolic-elliptic Keller-Segel system with power law diffusion with exponent $\gamma \in [1,3]$ and periodic boundary conditions. We derive conditional a posteriori bounds for the error measured in the $L^\infty(0,T;H^1(\Omega))$ norm for the chemoattractant and by a quasi-norm-like quantity for the density. These results are based on stability estimates and suitable conforming reconstructions of the numerical solution. We perform numerical experiments showing that our error bounds are linear in mesh width and elucidating the behaviour of the error estimator under changes of $\gamma$.