Large Language Models (LLMs) have emerged as powerful conversational interfaces, and their application in process mining (PM) tasks has shown promising results. However, state-of-the-art LLMs struggle with complex scenarios that demand advanced reasoning capabilities. In the literature, two primary approaches have been proposed for implementing PM using LLMs: providing textual insights based on a textual abstraction of the process mining artifact, and generating code executable on the original artifact. This paper proposes utilizing the AI-Based Agents Workflow (AgWf) paradigm to enhance the effectiveness of PM on LLMs. This approach allows for: i) the decomposition of complex tasks into simpler workflows, and ii) the integration of deterministic tools with the domain knowledge of LLMs. We examine various implementations of AgWf and the types of AI-based tasks involved. Additionally, we discuss the CrewAI implementation framework and present examples related to process mining.
Large Language Models (LLMs) have shown impressive abilities in code generation, but they may generate erroneous programs. Reading a program takes ten times longer than writing it. Showing these erroneous programs to developers will waste developers' energies and introduce security risks to software. To address the above limitations, we propose HonestCoder, a novel LLM-based code generation approach. HonestCoder selectively shows the generated programs to developers based on LLMs' confidence. The confidence provides valuable insights into the correctness of generated programs. To achieve this goal, we propose a novel approach to estimate LLMs' confidence in code generation. It estimates confidence by measuring the multi-modal similarity between LLMs-generated programs. We collect and release a multilingual benchmark named TruthCodeBench, which consists of 2,265 samples and covers two popular programming languages (i.e., Python and Java). We apply HonestCoder to four popular LLMs (e.g., DeepSeek-Coder and Code Llama) and evaluate it on TruthCodeBench. Based on the experiments, we obtain the following insights. (1) HonestCoder can effectively estimate LLMs' confidence and accurately determine the correctness of generated programs. For example, HonestCoder outperforms the state-of-the-art baseline by 27.79% in AUROC and 63.74% in AUCPR. (2) HonestCoder can decrease the number of erroneous programs shown to developers. Compared to eight baselines, it can show more correct programs and fewer erroneous programs to developers. (3) Compared to showing code indiscriminately, HonestCoder only adds slight time overhead (approximately 0.4 seconds per requirement). (4) We discuss future directions to facilitate the application of LLMs in software development. We hope this work can motivate broad discussions about measuring the reliability of LLMs' outputs in performing code-related tasks.
State space models (SSMs) have emerged as a powerful framework for modelling long-range dependencies in sequence data. Unlike traditional recurrent neural networks (RNNs) and convolutional neural networks (CNNs), SSMs offer a structured and stable approach to sequence modelling, leveraging principles from control theory and dynamical systems. However, a key challenge in sequence modelling is compressing long-term dependencies into a compact hidden state representation without losing critical information. In this paper, we develop a rigorous mathematical framework for understanding memory compression in selective state space models. We introduce a selective gating mechanism that dynamically filters and updates the hidden state based on input relevance, allowing for efficient memory compression. We formalize the trade-off between memory efficiency and information retention using information-theoretic tools, such as mutual information and rate-distortion theory. Our analysis provides theoretical bounds on the amount of information that can be compressed without sacrificing model performance. We also derive theorems that prove the stability and convergence of the hidden state in selective SSMs, ensuring reliable long-term memory retention. Computational complexity analysis reveals that selective SSMs offer significant improvements in memory efficiency and processing speed compared to traditional RNN-based models. Through empirical validation on sequence modelling tasks such as time-series forecasting and natural language processing, we demonstrate that selective SSMs achieve state-of-the-art performance while using less memory and computational resources.
With the massive advancements in processing power, Digital Twins (DTs) have become powerful tools to monitor and analyze physical entities. However, due to the potentially very high number of Physical Systems (PSs) to be tracked and emulated, for instance, in a factory environment or an Internet of Things (IoT) network, continuous twinning might become infeasible. In this paper, a DT system is investigated with a set of random PSs, where the twinning rate is limited due to resource constraints. Three cost functions are considered to quantify and penalize the twinning delay. For these cost functions, the optimal twinning problem under twinning rate constraints is formulated. In a numerical example, the proposed cost functions are evaluated for two, one push-based and one pull-based, benchmark twinning policies. The proposed methodology is the first to investigate the optimal twinning problem with random PSs and twinning rate constraints, and serves as a guideline for real-world implementations on how frequently PSs should be twinned.
Remarkable progress in the development of Deep Learning Weather Prediction (DLWP) models positions them to become competitive with traditional numerical weather prediction (NWP) models. Indeed, a wide number of DLWP architectures -- based on various backbones, including U-Net, Transformer, Graph Neural Network (GNN), and Fourier Neural Operator (FNO) -- have demonstrated their potential at forecasting atmospheric states. However, due to differences in training protocols, forecast horizons, and data choices, it remains unclear which (if any) of these methods and architectures are most suitable for weather forecasting and for future model development. Here, we step back and provide a detailed empirical analysis, under controlled conditions, comparing and contrasting the most prominent DLWP models, along with their backbones. We accomplish this by predicting synthetic two-dimensional incompressible Navier-Stokes and real-world global weather dynamics. In terms of accuracy, memory consumption, and runtime, our results illustrate various tradeoffs. For example, on synthetic data, we observe favorable performance of FNO; and on the real-world WeatherBench dataset, our results demonstrate the suitability of ConvLSTM and SwinTransformer for short-to-mid-ranged forecasts. For long-ranged weather rollouts of up to 365 days, we observe superior stability and physical soundness in architectures that formulate a spherical data representation, i.e., GraphCast and Spherical FNO. In addition, we observe that all of these model backbones "saturate," i.e., none of them exhibit so-called neural scaling, which highlights an important direction for future work on these and related models. The code is available at //github.com/amazon-science/dlwp-benchmark.
Large Language Models (LLMs) are increasingly being explored for their potential in software engineering, particularly in static analysis tasks. In this study, we investigate the potential of current LLMs to enhance call-graph analysis and type inference for Python and JavaScript programs. We empirically evaluated 24 LLMs, including OpenAI's GPT series and open-source models like LLaMA and Mistral, using existing and newly developed benchmarks. Specifically, we enhanced TypeEvalPy, a micro-benchmarking framework for type inference in Python, with auto-generation capabilities, expanding its scope from 860 to 77,268 type annotations for Python. Additionally, we introduced SWARM-CG and SWARM-JS, comprehensive benchmarking suites for evaluating call-graph construction tools across multiple programming languages. Our findings reveal a contrasting performance of LLMs in static analysis tasks. For call-graph generation in Python, traditional static analysis tools like PyCG significantly outperform LLMs. In JavaScript, the static tool TAJS underperforms due to its inability to handle modern language features, while LLMs, despite showing potential with models like mistral-large-it-2407-123b and GPT-4o, struggle with completeness and soundness in both languages for call-graph analysis. Conversely, LLMs demonstrate a clear advantage in type inference for Python, surpassing traditional tools like HeaderGen and hybrid approaches such as HiTyper. These results suggest that while LLMs hold promise in type inference, their limitations in call-graph analysis highlight the need for further research. Our study provides a foundation for integrating LLMs into static analysis workflows, offering insights into their strengths and current limitations.
In Influence Maximization (IM), the objective is to -- given a budget -- select the optimal set of entities in a network to target with a treatment so as to maximize the total effect. For instance, in marketing, the objective is to target the set of customers that maximizes the total response rate, resulting from both direct treatment effects on targeted customers and indirect, spillover, effects that follow from targeting these customers. Recently, new methods to estimate treatment effects in the presence of network interference have been proposed. However, the issue of how to leverage these models to make better treatment allocation decisions has been largely overlooked. Traditionally, in Uplift Modeling (UM), entities are ranked according to estimated treatment effect, and the top entities are allocated treatment. Since, in a network context, entities influence each other, the UM ranking approach will be suboptimal. The problem of finding the optimal treatment allocation in a network setting is combinatorial and generally has to be solved heuristically. To fill the gap between IM and UM, we propose OTAPI: Optimizing Treatment Allocation in the Presence of Interference to find solutions to the IM problem using treatment effect estimates. OTAPI consists of two steps. First, a causal estimator is trained to predict treatment effects in a network setting. Second, this estimator is leveraged to identify an optimal treatment allocation by integrating it into classic IM algorithms. We demonstrate that this novel method outperforms classic IM and UM approaches on both synthetic and semi-synthetic datasets.
Graph Neural Networks (GNNs) have proven to be useful for many different practical applications. However, many existing GNN models have implicitly assumed homophily among the nodes connected in the graph, and therefore have largely overlooked the important setting of heterophily, where most connected nodes are from different classes. In this work, we propose a novel framework called CPGNN that generalizes GNNs for graphs with either homophily or heterophily. The proposed framework incorporates an interpretable compatibility matrix for modeling the heterophily or homophily level in the graph, which can be learned in an end-to-end fashion, enabling it to go beyond the assumption of strong homophily. Theoretically, we show that replacing the compatibility matrix in our framework with the identity (which represents pure homophily) reduces to GCN. Our extensive experiments demonstrate the effectiveness of our approach in more realistic and challenging experimental settings with significantly less training data compared to previous works: CPGNN variants achieve state-of-the-art results in heterophily settings with or without contextual node features, while maintaining comparable performance in homophily settings.
Most recent semantic segmentation methods adopt a fully-convolutional network (FCN) with an encoder-decoder architecture. The encoder progressively reduces the spatial resolution and learns more abstract/semantic visual concepts with larger receptive fields. Since context modeling is critical for segmentation, the latest efforts have been focused on increasing the receptive field, through either dilated/atrous convolutions or inserting attention modules. However, the encoder-decoder based FCN architecture remains unchanged. In this paper, we aim to provide an alternative perspective by treating semantic segmentation as a sequence-to-sequence prediction task. Specifically, we deploy a pure transformer (ie, without convolution and resolution reduction) to encode an image as a sequence of patches. With the global context modeled in every layer of the transformer, this encoder can be combined with a simple decoder to provide a powerful segmentation model, termed SEgmentation TRansformer (SETR). Extensive experiments show that SETR achieves new state of the art on ADE20K (50.28% mIoU), Pascal Context (55.83% mIoU) and competitive results on Cityscapes. Particularly, we achieve the first (44.42% mIoU) position in the highly competitive ADE20K test server leaderboard.
Graph Neural Networks (GNNs) have recently been used for node and graph classification tasks with great success, but GNNs model dependencies among the attributes of nearby neighboring nodes rather than dependencies among observed node labels. In this work, we consider the task of inductive node classification using GNNs in supervised and semi-supervised settings, with the goal of incorporating label dependencies. Because current GNNs are not universal (i.e., most-expressive) graph representations, we propose a general collective learning approach to increase the representation power of any existing GNN. Our framework combines ideas from collective classification with self-supervised learning, and uses a Monte Carlo approach to sampling embeddings for inductive learning across graphs. We evaluate performance on five real-world network datasets and demonstrate consistent, significant improvement in node classification accuracy, for a variety of state-of-the-art GNNs.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.