In this paper, we examine the internet of things system which is dedicated for smart cities, smart factory, and connected cars, etc. To support such systems in wide area with low power consumption, energy harvesting technology without wired charging infrastructure is one of the important issues for longevity of networks. In consideration of the fact that the position and amount of energy charged for each device might be unbalanced according to the distribution of nodes and energy sources, the problem of maximizing the minimum throughput among all nodes becomes a NP-hard challenging issue. To overcome this complexity, we propose a machine learning based relaying topology algorithm with a novel backward-pass rate assessment method to present proper learning direction and an iterative balancing time slot allocation algorithm which can utilize the node with sufficient energy as the relay. To validate the proposed scheme, we conducted simulations on the system model we established, thus confirm that the proposed scheme is stable and superior to conventional schemes.
Graphene is one of the most researched two dimensional (2D) material due to its unique combination of mechanical, thermal and electrical properties. Special 2D structure of graphene enables it to exhibit a wide range of peculiar material properties like high Young's modulus, high specific strength etc. which are critical for myriad of applications including light weight structural materials, multi-functional coating and flexible electronics. It is quite challenging and costly to experimentally investigate graphene/graphene based nanocomposites, computational simulations such as molecular dynamics (MD) simulations are widely adopted for understanding the microscopic origins of their unique properties. However, disparate results were reported from computational studies, especially MD simulations using various empirical inter-atomic potentials. In this work, an artificial neural network based interatomic potential has been developed for graphene to represent the potential energy surface based on first principle calculations. The developed machine learning potential (MLP) facilitates high fidelity MD simulations to approach the accuracy of ab initio methods but with a fraction of computational cost, which allows larger simulation size/length, and thereby enables accelerated discovery/design of graphene-based novel materials. Lattice parameter, coefficient of thermal expansion (CTE), Young's modulus and yield strength are estimated using machine learning accelerated MD simulations (MLMD), which are compared to experimental/first principle calculations from previous literatures. It is demonstrated that MLMD can capture the dominating mechanism governing CTE of graphene, including effects from lattice parameter and out of plane rippling.
Background: Cannabis use disorder (CUD) is a growing public health problem. Early identification of adolescents and young adults at risk of developing CUD in the future may help stem this trend. A logistic regression model fitted using a Bayesian learning approach was developed recently to predict the risk of future CUD based on seven risk factors in adolescence and youth. A nationally representative longitudinal dataset, Add Health was used to train the model (henceforth referred as Add Health model). Methods: We validated the Add Health model on two cohorts, namely, Michigan Longitudinal Study (MLS) and Christchurch Health and Development Study (CHDS) using longitudinal data from participants until they were approximately 30 years old (to be consistent with the training data from Add Health). If a participant was diagnosed with CUD at any age during this period, they were considered a case. We calculated the area under the curve (AUC) and the ratio of expected and observed number of cases (E/O). We also explored re-calibrating the model to account for differences in population prevalence. Results: The cohort sizes used for validation were 424 (53 cases) for MLS and 637 (105 cases) for CHDS. AUCs for the two cohorts were 0.66 (MLS) and 0.73 (CHDS) and the corresponding E/O ratios (after recalibration) were 0.995 and 0.999. Conclusion: The external validation of the Add Health model on two different cohorts lends confidence to the model's ability to identify adolescent or young adult cannabis users at high risk of developing CUD in later life.
Evidence-based or data-driven dynamic treatment regimes are essential for personalized medicine, which can benefit from offline reinforcement learning (RL). Although massive healthcare data are available across medical institutions, they are prohibited from sharing due to privacy constraints. Besides, heterogeneity exists in different sites. As a result, federated offline RL algorithms are necessary and promising to deal with the problems. In this paper, we propose a multi-site Markov decision process model which allows both homogeneous and heterogeneous effects across sites. The proposed model makes the analysis of the site-level features possible. We design the first federated policy optimization algorithm for offline RL with sample complexity. The proposed algorithm is communication-efficient and privacy-preserving, which requires only a single round of communication interaction by exchanging summary statistics. We give a theoretical guarantee for the proposed algorithm without the assumption of sufficient action coverage, where the suboptimality for the learned policies is comparable to the rate as if data is not distributed. Extensive simulations demonstrate the effectiveness of the proposed algorithm. The method is applied to a sepsis data set in multiple sites to illustrate its use in clinical settings.
Combinatorial optimization problems require an exhaustive search to find the optimal solution. A convenient approach to solving combinatorial optimization tasks in the form of Mixed Integer Linear Programs is Branch-and-Bound. Branch-and-Bound solver splits a task into two parts dividing the domain of an integer variable, then it solves them recursively, producing a tree of nested sub-tasks. The efficiency of the solver depends on the branchning heuristic used to select a variable for splitting. In the present work, we propose a reinforcement learning method that can efficiently learn the branching heuristic. We view the variable selection task as a tree Markov Decision Process, prove that the Bellman operator adapted for the tree Markov Decision Process is contracting in mean, and propose a modified learning objective for the reinforcement learning agent. Our agent requires less training data and produces smaller trees compared to previous reinforcement learning methods.
In this paper, we use Prior-data Fitted Networks (PFNs) as a flexible surrogate for Bayesian Optimization (BO). PFNs are neural processes that are trained to approximate the posterior predictive distribution (PPD) through in-context learning on any prior distribution that can be efficiently sampled from. We describe how this flexibility can be exploited for surrogate modeling in BO. We use PFNs to mimic a naive Gaussian process (GP), an advanced GP, and a Bayesian Neural Network (BNN). In addition, we show how to incorporate further information into the prior, such as allowing hints about the position of optima (user priors), ignoring irrelevant dimensions, and performing non-myopic BO by learning the acquisition function. The flexibility underlying these extensions opens up vast possibilities for using PFNs for BO. We demonstrate the usefulness of PFNs for BO in a large-scale evaluation on artificial GP samples and three different hyperparameter optimization testbeds: HPO-B, Bayesmark, and PD1. We publish code alongside trained models at //github.com/automl/PFNs4BO.
This research explores the utilization of relays in vehicle-to-all (V2X) communications, where roadside units (RSUs) alone may not be sufficient to ensure network connectivity due to network congestion, signal attenuation, or interference. By employing stochastic geometry, we analyze a spatially-correlated vehicular network that incorporates both RSUs and relays to serve network users on roads. Our model considers the geometric characteristics of roads, RSUs, relays, and users using Cox point processes conditionally on the same road structure. Assuming disjoint frequency resources for serving users and for enabling RSU-connected relays, each user can associate with either an RSU or a relay whichever is closest to it. We derive the association probability and coverage probability for the typical user, enabling us to assess network performance. Additionally, we investigate user throughput by considering interactions among different links within the proposed network. This paper offers practical insights for the design of two-tier vehicular networks. Specifically, we express user association, user signal-to-interference ratio (SIR), and user throughput as functions of network variables. This information aids in determining optimal relay density and operating bandwidth to enhance network reliability and maximize user throughput in vehicular networks.
Unmanned Aerial Vehicles (UAVs) hold great potential to support a wide range of applications due to the high maneuverability and flexibility. Compared with single UAV, UAV swarm carries out tasks efficiently in harsh environment, where the network resilience is of vital importance to UAV swarm. The network topology has a fundamental impact on the resilience of UAV network. It is discovered that scale-free network topology, as a topology that exists widely in nature, has the ability to enhance the network resilience. Besides, increasing network throughput can enhance the efficiency of information interaction, improving the network resilience. Facing these facts, this paper studies the throughput of UAV Network with scale-free topology. Introducing the hybrid network structure combining both ad hoc transmission mode and cellular transmission mode into UAV Network, the throughput of UAV Network is improved compared with that of pure ad hoc UAV network. Furthermore, this work also investigates the optimal setting of the hop threshold for the selection of ad hoc or cellular transmission mode. It is discovered that the optimal hop threshold is related with the number of UAVs and the parameters of scale-free topology. This paper may motivate the application of hybrid network structure into UAV Network.
Smart buildings are increasingly using Internet of Things (IoT)-based wireless sensing systems to reduce their energy consumption and environmental impact. As a result of their compact size and ability to sense, measure, and compute all electrical properties, Internet of Things devices have become increasingly important in our society. A major contribution of this study is the development of a comprehensive IoT-based framework for smart city energy management, incorporating multiple components of IoT architecture and framework. An IoT framework for intelligent energy management applications that employ intelligent analysis is an essential system component that collects and stores information. Additionally, it serves as a platform for the development of applications by other companies. Furthermore, we have studied intelligent energy management solutions based on intelligent mechanisms. The depletion of energy resources and the increase in energy demand have led to an increase in energy consumption and building maintenance. The data collected is used to monitor, control, and enhance the efficiency of the system.
Graph machine learning has been extensively studied in both academic and industry. However, as the literature on graph learning booms with a vast number of emerging methods and techniques, it becomes increasingly difficult to manually design the optimal machine learning algorithm for different graph-related tasks. To tackle the challenge, automated graph machine learning, which aims at discovering the best hyper-parameter and neural architecture configuration for different graph tasks/data without manual design, is gaining an increasing number of attentions from the research community. In this paper, we extensively discuss automated graph machine approaches, covering hyper-parameter optimization (HPO) and neural architecture search (NAS) for graph machine learning. We briefly overview existing libraries designed for either graph machine learning or automated machine learning respectively, and further in depth introduce AutoGL, our dedicated and the world's first open-source library for automated graph machine learning. Last but not least, we share our insights on future research directions for automated graph machine learning. This paper is the first systematic and comprehensive discussion of approaches, libraries as well as directions for automated graph machine learning.
Over the past few years, we have seen fundamental breakthroughs in core problems in machine learning, largely driven by advances in deep neural networks. At the same time, the amount of data collected in a wide array of scientific domains is dramatically increasing in both size and complexity. Taken together, this suggests many exciting opportunities for deep learning applications in scientific settings. But a significant challenge to this is simply knowing where to start. The sheer breadth and diversity of different deep learning techniques makes it difficult to determine what scientific problems might be most amenable to these methods, or which specific combination of methods might offer the most promising first approach. In this survey, we focus on addressing this central issue, providing an overview of many widely used deep learning models, spanning visual, sequential and graph structured data, associated tasks and different training methods, along with techniques to use deep learning with less data and better interpret these complex models --- two central considerations for many scientific use cases. We also include overviews of the full design process, implementation tips, and links to a plethora of tutorials, research summaries and open-sourced deep learning pipelines and pretrained models, developed by the community. We hope that this survey will help accelerate the use of deep learning across different scientific domains.