亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Background: Cannabis use disorder (CUD) is a growing public health problem. Early identification of adolescents and young adults at risk of developing CUD in the future may help stem this trend. A logistic regression model fitted using a Bayesian learning approach was developed recently to predict the risk of future CUD based on seven risk factors in adolescence and youth. A nationally representative longitudinal dataset, Add Health was used to train the model (henceforth referred as Add Health model). Methods: We validated the Add Health model on two cohorts, namely, Michigan Longitudinal Study (MLS) and Christchurch Health and Development Study (CHDS) using longitudinal data from participants until they were approximately 30 years old (to be consistent with the training data from Add Health). If a participant was diagnosed with CUD at any age during this period, they were considered a case. We calculated the area under the curve (AUC) and the ratio of expected and observed number of cases (E/O). We also explored re-calibrating the model to account for differences in population prevalence. Results: The cohort sizes used for validation were 424 (53 cases) for MLS and 637 (105 cases) for CHDS. AUCs for the two cohorts were 0.66 (MLS) and 0.73 (CHDS) and the corresponding E/O ratios (after recalibration) were 0.995 and 0.999. Conclusion: The external validation of the Add Health model on two different cohorts lends confidence to the model's ability to identify adolescent or young adult cannabis users at high risk of developing CUD in later life.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · prototype · 符號表示 · 表示 · MoDELS ·
2023 年 8 月 3 日

Bridging the huge disparity between neural and symbolic representation can potentially enable the incorporation of symbolic thinking into neural networks from essence. Motivated by how human gradually builds complex symbolic representation from the prototype symbols that are learned through perception and environmental interactions. We propose a Neural-Symbolic Transitional Dictionary Learning (TDL) framework that employs an EM algorithm to learn a transitional representation of data that compresses high-dimension information of visual parts of an input into a set of tensors as neural variables and discover the implicit predicate structure in a self-supervised way. We implement the framework with a diffusion model by regarding the decomposition of input as a cooperative game, then learn predicates by prototype clustering. We additionally use RL enabled by the Markovian of diffusion models to further tune the learned prototypes by incorporating subjective factors. Extensive experiments on 3 abstract compositional visual objects datasets that require the model to segment parts without any visual features like texture, color, or shadows apart from shape and 3 neural/symbolic downstream tasks demonstrate the learned representation enables interpretable decomposition of visual input and smooth adaption to downstream tasks which are not available by existing methods.

Dietary assessment is a key contributor to monitoring health status. Existing self-report methods are tedious and time-consuming with substantial biases and errors. Image-based food portion estimation aims to estimate food energy values directly from food images, showing great potential for automated dietary assessment solutions. Existing image-based methods either use a single-view image or incorporate multi-view images and depth information to estimate the food energy, which either has limited performance or creates user burdens. In this paper, we propose an end-to-end deep learning framework for food energy estimation from a monocular image through 3D shape reconstruction. We leverage a generative model to reconstruct the voxel representation of the food object from the input image to recover the missing 3D information. Our method is evaluated on a publicly available food image dataset Nutrition5k, resulting a Mean Absolute Error (MAE) of 40.05 kCal and Mean Absolute Percentage Error (MAPE) of 11.47% for food energy estimation. Our method uses RGB image as the only input at the inference stage and achieves competitive results compared to the existing method requiring both RGB and depth information.

Federated learning enables data sharing in healthcare contexts where it might otherwise be difficult due to data-use-ordinances or security and communication constraints. Distributed and shared data models allow models to become generalizable and learn from heterogeneous clients. While addressing data security, privacy, and vulnerability considerations, data itself is not shared across nodes in a given learning network. On the other hand, FL models often struggle with variable client data distributions and operate on an assumption of independent and identically distributed data. As the field has grown, the notion of fairness-aware federated learning mechanisms has also been introduced and is of distinct significance to the healthcare domain where many sensitive groups and protected classes exist. In this paper, we create a benchmark methodology for FAFL mechanisms under various heterogeneous conditions on datasets in the healthcare domain typically outside the scope of current federated learning benchmarks, such as medical imaging and waveform data formats. Our results indicate considerable variation in how various FAFL schemes respond to high levels of data heterogeneity. Additionally, doing so under privacy-preserving conditions can create significant increases in network communication cost and latency compared to the typical federated learning scheme.

Medical image segmentation is a vital healthcare endeavor requiring precise and efficient models for appropriate diagnosis and treatment. Vision transformer (ViT)-based segmentation models have shown great performance in accomplishing this task. However, to build a powerful backbone, the self-attention block of ViT requires large-scale pre-training data. The present method of modifying pre-trained models entails updating all or some of the backbone parameters. This paper proposes a novel fine-tuning strategy for adapting a pretrained transformer-based segmentation model on data from a new medical center. This method introduces a small number of learnable parameters, termed prompts, into the input space (less than 1\% of model parameters) while keeping the rest of the model parameters frozen. Extensive studies employing data from new unseen medical centers show that the prompt-based fine-tuning of medical segmentation models provides excellent performance regarding the new-center data with a negligible drop regarding the old centers. Additionally, our strategy delivers great accuracy with minimum re-training on new-center data, significantly decreasing the computational and time costs of fine-tuning pre-trained models.

Breast Cancer (BC) is among women's most lethal health concerns. Early diagnosis can alleviate the mortality rate by helping patients make efficient treatment decisions. Human Epidermal Growth Factor Receptor (HER2) has become one the most lethal subtype of BC. According to the College of American Pathologists/American Society of Clinical Oncology (CAP/ASCO), the severity level of HER2 expression can be classified between 0 and 3+ range. HER2 can be detected effectively from immunohistochemical (IHC) and, hematoxylin \& eosin (HE) images of different classes such as 0, 1+, 2+, and 3+. An ensemble approach integrated with threshold filtered single instance evaluation (SIE) technique has been proposed in this study to diagnose BC from the multi-categorical expression of HER2 subtypes. Initially, DenseNet201 and Xception have been ensembled into a single classifier as feature extractors with an effective combination of global average pooling, dropout layer, dense layer with a swish activation function, and l2 regularizer, batch normalization, etc. After that, extracted features has been processed through single instance evaluation (SIE) to determine different confidence levels and adjust decision boundary among the imbalanced classes. This study has been conducted on the BC immunohistochemical (BCI) dataset, which is classified by pathologists into four stages of HER2 BC. This proposed approach known as DenseNet201-Xception-SIE with a threshold value of 0.7 surpassed all other existing state-of-art models with an accuracy of 97.12\%, precision of 97.15\%, and recall of 97.68\% on H\&E data and, accuracy of 97.56\%, precision of 97.57\%, and recall of 98.00\% on IHC data respectively, maintaining momentous improvement. Finally, Grad-CAM and Guided Grad-CAM have been employed in this study to interpret, how TL-based model works on the histopathology dataset and make decisions from the data.

Developing methods for extracting relevant legal information to aid legal practitioners is an active research area. In this regard, research efforts are being made by leveraging different kinds of information, such as meta-data, citations, keywords, sentences, paragraphs, etc. Similar to any text document, legal documents are composed of paragraphs. In this paper, we have analyzed the resourcefulness of paragraph-level information in capturing similarity among judgments for improving the performance of precedence retrieval. We found that the paragraph-level methods could capture the similarity among the judgments with only a few paragraph interactions and exhibit more discriminating power over the baseline document-level method. Moreover, the comparison results on two benchmark datasets for the precedence retrieval on the Indian supreme court judgments task show that the paragraph-level methods exhibit comparable performance with the state-of-the-art methods

In contrast to batch learning where all training data is available at once, continual learning represents a family of methods that accumulate knowledge and learn continuously with data available in sequential order. Similar to the human learning process with the ability of learning, fusing, and accumulating new knowledge coming at different time steps, continual learning is considered to have high practical significance. Hence, continual learning has been studied in various artificial intelligence tasks. In this paper, we present a comprehensive review of the recent progress of continual learning in computer vision. In particular, the works are grouped by their representative techniques, including regularization, knowledge distillation, memory, generative replay, parameter isolation, and a combination of the above techniques. For each category of these techniques, both its characteristics and applications in computer vision are presented. At the end of this overview, several subareas, where continuous knowledge accumulation is potentially helpful while continual learning has not been well studied, are discussed.

Due to their increasing spread, confidence in neural network predictions became more and more important. However, basic neural networks do not deliver certainty estimates or suffer from over or under confidence. Many researchers have been working on understanding and quantifying uncertainty in a neural network's prediction. As a result, different types and sources of uncertainty have been identified and a variety of approaches to measure and quantify uncertainty in neural networks have been proposed. This work gives a comprehensive overview of uncertainty estimation in neural networks, reviews recent advances in the field, highlights current challenges, and identifies potential research opportunities. It is intended to give anyone interested in uncertainty estimation in neural networks a broad overview and introduction, without presupposing prior knowledge in this field. A comprehensive introduction to the most crucial sources of uncertainty is given and their separation into reducible model uncertainty and not reducible data uncertainty is presented. The modeling of these uncertainties based on deterministic neural networks, Bayesian neural networks, ensemble of neural networks, and test-time data augmentation approaches is introduced and different branches of these fields as well as the latest developments are discussed. For a practical application, we discuss different measures of uncertainty, approaches for the calibration of neural networks and give an overview of existing baselines and implementations. Different examples from the wide spectrum of challenges in different fields give an idea of the needs and challenges regarding uncertainties in practical applications. Additionally, the practical limitations of current methods for mission- and safety-critical real world applications are discussed and an outlook on the next steps towards a broader usage of such methods is given.

Clinical Named Entity Recognition (CNER) aims to identify and classify clinical terms such as diseases, symptoms, treatments, exams, and body parts in electronic health records, which is a fundamental and crucial task for clinical and translational research. In recent years, deep neural networks have achieved significant success in named entity recognition and many other Natural Language Processing (NLP) tasks. Most of these algorithms are trained end to end, and can automatically learn features from large scale labeled datasets. However, these data-driven methods typically lack the capability of processing rare or unseen entities. Previous statistical methods and feature engineering practice have demonstrated that human knowledge can provide valuable information for handling rare and unseen cases. In this paper, we address the problem by incorporating dictionaries into deep neural networks for the Chinese CNER task. Two different architectures that extend the Bi-directional Long Short-Term Memory (Bi-LSTM) neural network and five different feature representation schemes are proposed to handle the task. Computational results on the CCKS-2017 Task 2 benchmark dataset show that the proposed method achieves the highly competitive performance compared with the state-of-the-art deep learning methods.

Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.

北京阿比特科技有限公司