亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The article discusses the localization of radiation sources whose number and other relevant parameters are not known in advance. The data collection is ensured by an autonomous mobile robot that performs a survey in a defined region of interest populated with static obstacles. The measurement trajectory is information-driven rather than pre-planned. The localization exploits a regularized particle filter estimating the sources' parameters continuously. The dynamic robot control switches between two modes, one attempting to minimize the Shannon entropy and the other aiming to reduce the variance of expected measurements in unexplored parts of the target area; both of the modes maintain safe clearance from the obstacles. The performance of the algorithms was tested in a simulation study based on real-world data acquired previously from three radiation sources exhibiting various activities. Our approach reduces the time necessary to explore the region and to find the sources by approximately 40 %; at present, however, the method is unable to reliably localize sources that have a relatively low intensity. In this context, additional research has been planned to increase the credibility and robustness of the procedure and to improve the robotic platform autonomy.

相關內容

We propose the use of the hypothetical retrospection argumentation procedure, developed by Sven Ove Hansson to improve existing approaches to machine ethical reasoning by accounting for probability and uncertainty from a position of Philosophy that resonates with humans. Actions are represented with a branching set of potential outcomes, each with a state, utility, and either a numeric or poetic probability estimate. Actions are chosen based on comparisons between sets of arguments favouring actions from the perspective of their branches, even those branches that led to an undesirable outcome. This use of arguments allows a variety of philosophical theories for ethical reasoning to be used, potentially in flexible combination with each other. We implement the procedure, applying consequentialist and deontological ethical theories, independently and concurrently, to an autonomous library system use case. We introduce a preliminary framework that seems to meet the varied requirements of a machine ethics system: versatility under multiple theories and a resonance with humans that enables transparency and explainability.

Autonomous, agile quadrotor flight raises fundamental challenges for robotics research in terms of perception, planning, learning, and control. A versatile and standardized platform is needed to accelerate research and let practitioners focus on the core problems. To this end, we present Agilicious, a co-designed hardware and software framework tailored to autonomous, agile quadrotor flight. It is completely open-source and open-hardware and supports both model-based and neural-network--based controllers. Also, it provides high thrust-to-weight and torque-to-inertia ratios for agility, onboard vision sensors, GPU-accelerated compute hardware for real-time perception and neural-network inference, a real-time flight controller, and a versatile software stack. In contrast to existing frameworks, Agilicious offers a unique combination of flexible software stack and high-performance hardware. We compare Agilicious with prior works and demonstrate it on different agile tasks, using both model-based and neural-network--based controllers. Our demonstrators include trajectory tracking at up to 5g and 70 km/h in a motion-capture system, and vision-based acrobatic flight and obstacle avoidance in both structured and unstructured environments using solely onboard perception. Finally, we demonstrate its use for hardware-in-the-loop simulation in virtual-reality environments. Thanks to its versatility, we believe that Agilicious supports the next generation of scientific and industrial quadrotor research.

Recent years have seen many insights on deep learning optimisation being brought forward by finding implicit regularisation effects of commonly used gradient-based optimisers. Understanding implicit regularisation can not only shed light on optimisation dynamics, but it can also be used to improve performance and stability across problem domains, from supervised learning to two-player games such as Generative Adversarial Networks. An avenue for finding such implicit regularisation effects has been quantifying the discretisation errors of discrete optimisers via continuous-time flows constructed by backward error analysis (BEA). The current usage of BEA is not without limitations, since not all the vector fields of continuous-time flows obtained using BEA can be written as a gradient, hindering the construction of modified losses revealing implicit regularisers. In this work, we provide a novel approach to use BEA, and show how our approach can be used to construct continuous-time flows with vector fields that can be written as gradients. We then use this to find previously unknown implicit regularisation effects, such as those induced by multiple stochastic gradient descent steps while accounting for the exact data batches used in the updates, and in generally differentiable two-player games.

Developing computational models of neural response is crucial for understanding sensory processing and neural computations. Current state-of-the-art neural network methods use temporal filters to handle temporal dependencies, resulting in an unrealistic and inflexible processing flow. Meanwhile, these methods target trial-averaged firing rates and fail to capture important features in spike trains. This work presents the temporal conditioning spiking latent variable models (TeCoS-LVM) to simulate the neural response to natural visual stimuli. We use spiking neurons to produce spike outputs that directly match the recorded trains. This approach helps to avoid losing information embedded in the original spike trains. We exclude the temporal dimension from the model parameter space and introduce a temporal conditioning operation to allow the model to adaptively explore and exploit temporal dependencies in stimuli sequences in a natural paradigm. We show that TeCoS-LVM models can produce more realistic spike activities and accurately fit spike statistics than powerful alternatives. Additionally, learned TeCoS-LVM models can generalize well to longer time scales. Overall, while remaining computationally tractable, our model effectively captures key features of neural coding systems. It thus provides a useful tool for building accurate predictive computational accounts for various sensory perception circuits.

Single-photon cameras (SPCs) have emerged as a promising technology for high-resolution 3D imaging. A single-photon 3D camera determines the round-trip time of a laser pulse by capturing the arrival of individual photons at each camera pixel. Constructing photon-timestamp histograms is a fundamental operation for a single-photon 3D camera. However, in-pixel histogram processing is computationally expensive and requires large amount of memory per pixel. Digitizing and transferring photon timestamps to an off-sensor histogramming module is bandwidth and power hungry. Here we present an online approach for distance estimation without explicitly storing photon counts. The two key ingredients of our approach are (a) processing photon streams using race logic, which maintains photon data in the time-delay domain, and (b) constructing count-free equi-depth histograms. Equi-depth histograms are a succinct representation for ``peaky'' distributions, such as those obtained by an SPC pixel from a laser pulse reflected by a surface. Our approach uses a binner element that converges on the median (or, more generally, to another quantile) of a distribution. We cascade multiple binners to form an equi-depth histogrammer that produces multi-bin histograms. Our evaluation shows that this method can provide an order of magnitude reduction in bandwidth and power consumption while maintaining similar distance reconstruction accuracy as conventional processing methods.

New lesion segmentation is essential to estimate the disease progression and therapeutic effects during multiple sclerosis (MS) clinical treatments. However, the expensive data acquisition and expert annotation restrict the feasibility of applying large-scale deep learning models. Since single-time-point samples with all-lesion labels are relatively easy to collect, exploiting them to train deep models is highly desirable to improve new lesion segmentation. Therefore, we proposed a coaction segmentation (CoactSeg) framework to exploit the heterogeneous data (i.e., new-lesion annotated two-time-point data and all-lesion annotated single-time-point data) for new MS lesion segmentation. The CoactSeg model is designed as a unified model, with the same three inputs (the baseline, follow-up, and their longitudinal brain differences) and the same three outputs (the corresponding all-lesion and new-lesion predictions), no matter which type of heterogeneous data is being used. Moreover, a simple and effective relation regularization is proposed to ensure the longitudinal relations among the three outputs to improve the model learning. Extensive experiments demonstrate that utilizing the heterogeneous data and the proposed longitudinal relation constraint can significantly improve the performance for both new-lesion and all-lesion segmentation tasks. Meanwhile, we also introduce an in-house MS-23v1 dataset, including 38 Oceania single-time-point samples with all-lesion labels. Codes and the dataset are released at //github.com/ycwu1997/CoactSeg.

This paper presents a novel visual-LiDAR odometry and mapping method with low-drift characteristics. The proposed method is based on two popular approaches, ORB-SLAM and A-LOAM, with monocular scale correction and visual-bootstrapped LiDAR poses initialization modifications. The scale corrector calculates the proportion between the depth of image keypoints recovered by triangulation and that provided by LiDAR, using an outlier rejection process for accuracy improvement. Concerning LiDAR poses initialization, the visual odometry approach gives the initial guesses of LiDAR motions for better performance. This methodology is not only applicable to high-resolution LiDAR but can also adapt to low-resolution LiDAR. To evaluate the proposed SLAM system's robustness and accuracy, we conducted experiments on the KITTI Odometry and S3E datasets. Experimental results illustrate that our method significantly outperforms standalone ORB-SLAM2 and A-LOAM. Furthermore, regarding the accuracy of visual odometry with scale correction, our method performs similarly to the stereo-mode ORB-SLAM2.

Stereo vision systems have become popular in computer vision applications, such as 3D reconstruction, object tracking, and autonomous navigation. However, traditional stereo vision systems that use rectilinear lenses may not be suitable for certain scenarios due to their limited field of view. This has led to the popularity of vision systems based on one or multiple fisheye cameras in different orientations, which can provide a field of view of 180x180 degrees or more. However, fisheye cameras introduce significant distortion at the edges that affects the accuracy of stereo matching and depth estimation. To overcome these limitations, this paper proposes a method for distortion-removal and depth estimation analysis for stereovision system using orthogonally divergent fisheye cameras (ODFC). The proposed method uses two virtual pinhole cameras (VPC), each VPC captures a small portion of the original view and presents it without any lens distortions, emulating the behavior of a pinhole camera. By carefully selecting the captured regions, it is possible to create a stereo pair using two VPCs. The performance of the proposed method is evaluated in both simulation using virtual environment and experiments using real cameras and their results compared to stereo cameras with parallel optical axes. The results demonstrate the effectiveness of the proposed method in terms of distortion removal and depth estimation accuracy.

Technological advancements have made it possible to deliver mobile health interventions to individuals. A novel framework that has emerged from such advancements is the just-in-time adaptive intervention (JITAI), which aims to suggest the right support to the individuals when their needs arise. The micro-randomized trial (MRT) design has been proposed recently to test the proximal effects of these JITAIs. However, the extant MRT framework only considers components with a fixed number of categories added at the beginning of the study. We propose a flexible MRT (FlexiMRT) design which allows addition of more categories to the components during the study. The proposed design is motivated by collaboration on the DIAMANTE study, which learns to deliver text messages to encourage physical activity among the patients with diabetes and depression. We developed a new test statistic and the corresponding sample size calculator for the FlexiMRT using an approach similar to the generalized estimating equation for longitudinal data. Simulation studies were conducted to evaluate the sample size calculators and an R shiny application for the calculators was developed.

Behaviors of the synthetic characters in current military simulations are limited since they are generally generated by rule-based and reactive computational models with minimal intelligence. Such computational models cannot adapt to reflect the experience of the characters, resulting in brittle intelligence for even the most effective behavior models devised via costly and labor-intensive processes. Observation-based behavior model adaptation that leverages machine learning and the experience of synthetic entities in combination with appropriate prior knowledge can address the issues in the existing computational behavior models to create a better training experience in military training simulations. In this paper, we introduce a framework that aims to create autonomous synthetic characters that can perform coherent sequences of believable behavior while being aware of human trainees and their needs within a training simulation. This framework brings together three mutually complementary components. The first component is a Unity-based simulation environment - Rapid Integration and Development Environment (RIDE) - supporting One World Terrain (OWT) models and capable of running and supporting machine learning experiments. The second is Shiva, a novel multi-agent reinforcement and imitation learning framework that can interface with a variety of simulation environments, and that can additionally utilize a variety of learning algorithms. The final component is the Sigma Cognitive Architecture that will augment the behavior models with symbolic and probabilistic reasoning capabilities. We have successfully created proof-of-concept behavior models leveraging this framework on realistic terrain as an essential step towards bringing machine learning into military simulations.

北京阿比特科技有限公司