亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Generalized category discovery (GCD) aims at addressing a more realistic and challenging setting of semi-supervised learning, where only part of the category labels are assigned to certain training samples. Previous methods generally employ naive contrastive learning or unsupervised clustering scheme for all the samples. Nevertheless, they usually ignore the inherent critical information within the historical predictions of the model being trained. Specifically, we empirically reveal that a significant number of salient unlabeled samples yield consistent historical predictions corresponding to their ground truth category. From this observation, we propose a Memory Consistency guided Divide-and-conquer Learning framework (MCDL). In this framework, we introduce two memory banks to record historical prediction of unlabeled data, which are exploited to measure the credibility of each sample in terms of its prediction consistency. With the guidance of credibility, we can design a divide-and-conquer learning strategy to fully utilize the discriminative information of unlabeled data while alleviating the negative influence of noisy labels. Extensive experimental results on multiple benchmarks demonstrate the generality and superiority of our method, where our method outperforms state-of-the-art models by a large margin on both seen and unseen classes of the generic image recognition and challenging semantic shift settings (i.e.,with +8.4% gain on CUB and +8.1% on Standford Cars).

相關內容

Causal representation learning aims at identifying high-level causal variables from perceptual data. Most methods assume that all latent causal variables are captured in the high-dimensional observations. We instead consider a partially observed setting, in which each measurement only provides information about a subset of the underlying causal state. Prior work has studied this setting with multiple domains or views, each depending on a fixed subset of latents. Here, we focus on learning from unpaired observations from a dataset with an instance-dependent partial observability pattern. Our main contribution is to establish two identifiability results for this setting: one for linear mixing functions without parametric assumptions on the underlying causal model, and one for piecewise linear mixing functions with Gaussian latent causal variables. Based on these insights, we propose two methods for estimating the underlying causal variables by enforcing sparsity in the inferred representation. Experiments on different simulated datasets and established benchmarks highlight the effectiveness of our approach in recovering the ground-truth latents.

Jupyter Notebook is an interactive development environment commonly used for rapid experimentation of machine learning (ML) solutions. Describing the ML activities performed along code cells improves the readability and understanding of Notebooks. Manual annotation of code cells is time-consuming and error-prone. Therefore, tools have been developed that classify the cells of a notebook concerning the ML activity performed in them. However, the current tools are not flexible, as they work based on look-up tables that have been created, which map function calls of commonly used ML libraries to ML activities. These tables must be manually adjusted to account for new or changed libraries. This paper presents a more flexible approach to cell classification based on a hybrid classification approach that combines a rule-based and a decision tree classifier. We discuss the design rationales and describe the developed classifiers in detail. We implemented the new flexible cell classification approach in a tool called JupyLabel. Its evaluation and the obtained metric scores regarding precision, recall, and F1-score are discussed. Additionally, we compared JupyLabel with HeaderGen, an existing cell classification tool. We were able to show that the presented flexible cell classification approach outperforms this tool significantly.

Recent advances in deep learning have enabled us to address the curse of dimensionality (COD) by solving problems in higher dimensions. A subset of such approaches of addressing the COD has led us to solving high-dimensional PDEs. This has resulted in opening doors to solving a variety of real-world problems ranging from mathematical finance to stochastic control for industrial applications. Although feasible, these deep learning methods are still constrained by training time and memory. Tackling these shortcomings, Tensor Neural Networks (TNN) demonstrate that they can provide significant parameter savings while attaining the same accuracy as compared to the classical Dense Neural Network (DNN). In addition, we also show how TNN can be trained faster than DNN for the same accuracy. Besides TNN, we also introduce Tensor Network Initializer (TNN Init), a weight initialization scheme that leads to faster convergence with smaller variance for an equivalent parameter count as compared to a DNN. We benchmark TNN and TNN Init by applying them to solve the parabolic PDE associated with the Heston model, which is widely used in financial pricing theory.

This study explores the application of the rate-splitting multiple access (RSMA) technique, vital for interference mitigation in modern communication systems. It investigates the use of precoding methods in RSMA, especially in complex multiple-antenna interference channels, employing deep reinforcement learning. The aim is to optimize precoders and power allocation for common and private data streams involving multiple decision-makers. A multi-agent deep deterministic policy gradient (MADDPG) framework is employed to address this complexity, where decentralized agents collectively learn to optimize actions in a continuous policy space. We also explore the challenges posed by imperfect channel side information at the transmitter. Additionally, decoding order estimation is addressed to determine the optimal decoding sequence for common and private data sequences. Simulation results demonstrate the effectiveness of the proposed RSMA method based on MADDPG, achieving the upper bound in single-antenna scenarios and closely approaching theoretical limits in multi-antenna scenarios. Comparative analysis shows superiority over other techniques such as MADDPG without rate-splitting, maximal ratio transmission (MRT), zero-forcing (ZF), and leakage-based precoding methods. These findings highlight the potential of deep reinforcement learning-driven RSMA in reducing interference and enhancing system performance in communication systems.

In recent years, there has been widespread adoption of machine learning-based approaches to automate the solving of partial differential equations (PDEs). Among these approaches, Gaussian processes (GPs) and kernel methods have garnered considerable interest due to their flexibility, robust theoretical guarantees, and close ties to traditional methods. They can transform the solving of general nonlinear PDEs into solving quadratic optimization problems with nonlinear, PDE-induced constraints. However, the complexity bottleneck lies in computing with dense kernel matrices obtained from pointwise evaluations of the covariance kernel, and its \textit{partial derivatives}, a result of the PDE constraint and for which fast algorithms are scarce. The primary goal of this paper is to provide a near-linear complexity algorithm for working with such kernel matrices. We present a sparse Cholesky factorization algorithm for these matrices based on the near-sparsity of the Cholesky factor under a novel ordering of pointwise and derivative measurements. The near-sparsity is rigorously justified by directly connecting the factor to GP regression and exponential decay of basis functions in numerical homogenization. We then employ the Vecchia approximation of GPs, which is optimal in the Kullback-Leibler divergence, to compute the approximate factor. This enables us to compute $\epsilon$-approximate inverse Cholesky factors of the kernel matrices with complexity $O(N\log^d(N/\epsilon))$ in space and $O(N\log^{2d}(N/\epsilon))$ in time. We integrate sparse Cholesky factorizations into optimization algorithms to obtain fast solvers of the nonlinear PDE. We numerically illustrate our algorithm's near-linear space/time complexity for a broad class of nonlinear PDEs such as the nonlinear elliptic, Burgers, and Monge-Amp\`ere equations.

Automated disease diagnosis using medical image analysis relies on deep learning, often requiring large labeled datasets for supervised model training. Diseases like Acute Myeloid Leukemia (AML) pose challenges due to scarce and costly annotations on a single-cell level. Multiple Instance Learning (MIL) addresses weakly labeled scenarios but necessitates powerful encoders typically trained with labeled data. In this study, we explore Self-Supervised Learning (SSL) as a pre-training approach for MIL-based AML subtype classification from blood smears, removing the need for labeled data during encoder training. We investigate the three state-of-the-art SSL methods SimCLR, SwAV, and DINO, and compare their performance against supervised pre-training. Our findings show that SSL-pretrained encoders achieve comparable performance, showcasing the potential of SSL in MIL. This breakthrough offers a cost-effective and data-efficient solution, propelling the field of AI-based disease diagnosis.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

While recent studies on semi-supervised learning have shown remarkable progress in leveraging both labeled and unlabeled data, most of them presume a basic setting of the model is randomly initialized. In this work, we consider semi-supervised learning and transfer learning jointly, leading to a more practical and competitive paradigm that can utilize both powerful pre-trained models from source domain as well as labeled/unlabeled data in the target domain. To better exploit the value of both pre-trained weights and unlabeled target examples, we introduce adaptive consistency regularization that consists of two complementary components: Adaptive Knowledge Consistency (AKC) on the examples between the source and target model, and Adaptive Representation Consistency (ARC) on the target model between labeled and unlabeled examples. Examples involved in the consistency regularization are adaptively selected according to their potential contributions to the target task. We conduct extensive experiments on several popular benchmarks including CUB-200-2011, MIT Indoor-67, MURA, by fine-tuning the ImageNet pre-trained ResNet-50 model. Results show that our proposed adaptive consistency regularization outperforms state-of-the-art semi-supervised learning techniques such as Pseudo Label, Mean Teacher, and MixMatch. Moreover, our algorithm is orthogonal to existing methods and thus able to gain additional improvements on top of MixMatch and FixMatch. Our code is available at //github.com/SHI-Labs/Semi-Supervised-Transfer-Learning.

This paper aims to mitigate straggler effects in synchronous distributed learning for multi-agent reinforcement learning (MARL) problems. Stragglers arise frequently in a distributed learning system, due to the existence of various system disturbances such as slow-downs or failures of compute nodes and communication bottlenecks. To resolve this issue, we propose a coded distributed learning framework, which speeds up the training of MARL algorithms in the presence of stragglers, while maintaining the same accuracy as the centralized approach. As an illustration, a coded distributed version of the multi-agent deep deterministic policy gradient(MADDPG) algorithm is developed and evaluated. Different coding schemes, including maximum distance separable (MDS)code, random sparse code, replication-based code, and regular low density parity check (LDPC) code are also investigated. Simulations in several multi-robot problems demonstrate the promising performance of the proposed framework.

There has been appreciable progress in unsupervised network representation learning (UNRL) approaches over graphs recently with flexible random-walk approaches, new optimization objectives and deep architectures. However, there is no common ground for systematic comparison of embeddings to understand their behavior for different graphs and tasks. In this paper we theoretically group different approaches under a unifying framework and empirically investigate the effectiveness of different network representation methods. In particular, we argue that most of the UNRL approaches either explicitly or implicit model and exploit context information of a node. Consequently, we propose a framework that casts a variety of approaches -- random walk based, matrix factorization and deep learning based -- into a unified context-based optimization function. We systematically group the methods based on their similarities and differences. We study the differences among these methods in detail which we later use to explain their performance differences (on downstream tasks). We conduct a large-scale empirical study considering 9 popular and recent UNRL techniques and 11 real-world datasets with varying structural properties and two common tasks -- node classification and link prediction. We find that there is no single method that is a clear winner and that the choice of a suitable method is dictated by certain properties of the embedding methods, task and structural properties of the underlying graph. In addition we also report the common pitfalls in evaluation of UNRL methods and come up with suggestions for experimental design and interpretation of results.

北京阿比特科技有限公司