亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Transport layer data leaks metadata unintentionally$\unicode{x2013}$such as who communicates with whom. While tools for strong transport layer privacy exist, they have adoption obstacles, including performance overheads incompatible with mobile devices. We posit that by changing the objective of metadata privacy for $\textit{all traffic}$, we can open up a new design space for pragmatic approaches to transport layer privacy. As a first step in this direction, we propose the $\textit{hybrid model}$, a system model that allows one to practically combine, and formally reason about network traffic with different privacy guarantees ($\textit{regular}$ and $\textit{deniable}$) in one joint system. Using techniques from information flow control we present a principled approach to construct a formal model and prove that deniable traffic achieves transport layer privacy against strong adversaries$\unicode{x2013}$this constitutes the first bridging of information flow control and anonymous communication to our knowledge. Additionally, we show that existing state-of-the-art protocols can be extended to support transport layer privacy, by designing a novel protocol for $\textit{deniable instant messaging}$ (DenIM), which is a variant of the Signal protocol. As an instantiation of the hybrid model, we implement and evaluate a proof-of-concept instant messaging system running both DenIM and regular Signal. We empirically show that the hybrid model can maintain low-latency for regular Signal traffic without breaking existing features, while at the same time supporting deniable Signal traffic.

相關內容

European lawmakers have ruled that users on different platforms should be able to exchange messages with each other. Yet messaging interoperability opens up a Pandora's box of security and privacy challenges. While championed not just as an anti-trust measure but as a means of providing a better experience for the end user, interoperability runs the risk of making the user experience worse if poorly executed. There are two fundamental questions: how to enable the actual message exchange, and how to handle the numerous residual challenges arising from encrypted messages passing from one service provider to another -- including but certainly not limited to content moderation, user authentication, key management, and metadata sharing between providers. In this work, we identify specific open questions and challenges around interoperable communication in end-to-end encrypted messaging, and present high-level suggestions for tackling these challenges.

In recent decades, a number of ways of dealing with causality in practice, such as propensity score matching, the PC algorithm and invariant causal prediction, have been introduced. Besides its interpretational appeal, the causal model provides the best out-of-sample prediction guarantees. In this paper, we study the identification of causal-like models from in-sample data that provide out-of-sample risk guarantees when predicting a target variable from a set of covariates. Whereas ordinary least squares provides the best in-sample risk with limited out-of-sample guarantees, causal models have the best out-of-sample guarantees but achieve an inferior in-sample risk. By defining a trade-off of these properties, we introduce $\textit{causal regularization}$. As the regularization is increased, it provides estimators whose risk is more stable across sub-samples at the cost of increasing their overall in-sample risk. The increased risk stability is shown to lead to out-of-sample risk guarantees. We provide finite sample risk bounds for all models and prove the adequacy of cross-validation for attaining these bounds.

In this extended abstract, we discuss the opportunity to formally verify that inference systems for probabilistic programming guarantee good performance. In particular, we focus on hybrid inference systems that combine exact and approximate inference to try to exploit the advantages of each. Their performance depends critically on a) the division between exact and approximate inference, and b) the computational resources consumed by exact inference. We describe several projects in this direction. Semi-symbolic Inference (SSI) is a type of hybrid inference system that provides limited guarantees by construction on the exact/approximate division. In addition to these limited guarantees, we also describe ongoing work to extend guarantees to a more complex class of programs, requiring a program analysis to ensure the guarantees. Finally, we also describe work on verifying that inference systems using delayed sampling -- another type of hybrid inference -- execute in bounded memory. Together, these projects show that verification can deliver the performance guarantees that probabilistic programming languages need.

The widespread use of maximum Jeffreys'-prior penalized likelihood in binomial-response generalized linear models, and in logistic regression, in particular, are supported by the results of Kosmidis and Firth (2021, Biometrika), who show that the resulting estimates are also always finite-valued, even in cases where the maximum likelihood estimates are not, which is a practical issue regardless of the size of the data set. In logistic regression, the implied adjusted score equations are formally bias-reducing in asymptotic frameworks with a fixed number of parameters and appear to deliver a substantial reduction in the persistent bias of the maximum likelihood estimator in high-dimensional settings where the number of parameters grows asymptotically linearly and slower than the number of observations. In this work, we develop and present two new variants of iteratively reweighted least squares for estimating generalized linear models with adjusted score equations for mean bias reduction and maximization of the likelihood penalized by a positive power of the Jeffreys-prior penalty, which eliminate the requirement of storing $O(n)$ quantities in memory, and can operate with data sets that exceed computer memory or even hard drive capacity. We achieve that through incremental QR decompositions, which enable IWLS iterations to have access only to data chunks of predetermined size. We assess the procedures through a real-data application with millions of observations, and in high-dimensional logistic regression, where a large-scale simulation experiment produces concrete evidence for the existence of a simple adjustment to the maximum Jeffreys'-penalized likelihood estimates that delivers high accuracy in terms of signal recovery even in cases where estimates from ML and other recently-proposed corrective methods do not exist.

We consider a cooperative multi-agent system consisting of a team of agents with decentralized information. Our focus is on the design of symmetric (i.e. identical) strategies for the agents in order to optimize a finite horizon team objective. We start with a general information structure and then consider some special cases. The constraint of using symmetric strategies introduces new features and complications in the team problem. For example, we show in a simple example that randomized symmetric strategies may outperform deterministic symmetric strategies. We also discuss why some of the known approaches for reducing agents' private information in teams may not work under the constraint of symmetric strategies. We then adopt the common information approach for our problem and modify it to accommodate the use of symmetric strategies. This results in a common information based dynamic program where each step involves minimization over a single function from the space of an agent's private information to the space of probability distributions over actions. We present specialized models where private information can be reduced using simple dynamic program based arguments.

The coupling of deep reinforcement learning to numerical flow control problems has recently received a considerable attention, leading to groundbreaking results and opening new perspectives for the domain. Due to the usually high computational cost of fluid dynamics solvers, the use of parallel environments during the learning process represents an essential ingredient to attain efficient control in a reasonable time. Yet, most of the deep reinforcement learning literature for flow control relies on on-policy algorithms, for which the massively parallel transition collection may break theoretical assumptions and lead to suboptimal control models. To overcome this issue, we propose a parallelism pattern relying on partial-trajectory buffers terminated by a return bootstrapping step, allowing a flexible use of parallel environments while preserving the on-policiness of the updates. This approach is illustrated on a CPU-intensive continuous flow control problem from the literature.

Gradient sparsification is a widely adopted solution for reducing the excessive communication traffic in distributed deep learning. However, most existing gradient sparsifiers have relatively poor scalability because of considerable computational cost of gradient selection and/or increased communication traffic owing to gradient build-up. To address these challenges, we propose a novel gradient sparsification scheme, DEFT, that partitions the gradient selection task into sub tasks and distributes them to workers. DEFT differs from existing sparsifiers, wherein every worker selects gradients among all gradients. Consequently, the computational cost can be reduced as the number of workers increases. Moreover, gradient build-up can be eliminated because DEFT allows workers to select gradients in partitions that are non-intersecting (between workers). Therefore, even if the number of workers increases, the communication traffic can be maintained as per user requirement. To avoid the loss of significance of gradient selection, DEFT selects more gradients in the layers that have a larger gradient norm than the other layers. Because every layer has a different computational load, DEFT allocates layers to workers using a bin-packing algorithm to maintain a balanced load of gradient selection between workers. In our empirical evaluation, DEFT shows a significant improvement in training performance in terms of speed in gradient selection over existing sparsifiers while achieving high convergence performance.

Well-calibrated traffic flow models are fundamental to understanding traffic phenomena and designing control strategies. Traditional calibration has been developed base on optimization methods. In this paper, we propose a novel physics-informed, learning-based calibration approach that achieves performances comparable to and even better than those of optimization-based methods. To this end, we combine the classical deep autoencoder, an unsupervised machine learning model consisting of one encoder and one decoder, with traffic flow models. Our approach informs the decoder of the physical traffic flow models and thus induces the encoder to yield reasonable traffic parameters given flow and speed measurements. We also introduce the denoising autoencoder into our method so that it can handles not only with normal data but also with corrupted data with missing values. We verified our approach with a case study of I-210 E in California.

Quantization is commonly used to compress and accelerate deep neural networks. Quantization assigning the same bit-width to all layers leads to large accuracy degradation at low precision and is wasteful at high precision settings. Mixed-precision quantization (MPQ) assigns varied bit-widths to layers to optimize the accuracy-efficiency trade-off. Existing methods simplify the MPQ problem by assuming that quantization errors at different layers act independently. We show that this assumption does not reflect the true behavior of quantized deep neural networks. We propose the first MPQ algorithm that captures the cross-layer dependency of quantization error. Our algorithm (CLADO) enables a fast approximation of pairwise cross-layer error terms by solving linear equations that require only forward evaluations of the network on a small amount of data. Decisions on layerwise bit-width assignments are then determined by optimizing a new MPQ formulation dependent on these cross-layer quantization errors via the Integer Quadratic Program (IQP), which can be solved within seconds. We conduct experiments on multiple networks on the Imagenet dataset and demonstrate an improvement, in top-1 classification accuracy, of up to 27% over uniform precision quantization, and up to 15% over existing MPQ methods.

Modeling multivariate time series has long been a subject that has attracted researchers from a diverse range of fields including economics, finance, and traffic. A basic assumption behind multivariate time series forecasting is that its variables depend on one another but, upon looking closely, it is fair to say that existing methods fail to fully exploit latent spatial dependencies between pairs of variables. In recent years, meanwhile, graph neural networks (GNNs) have shown high capability in handling relational dependencies. GNNs require well-defined graph structures for information propagation which means they cannot be applied directly for multivariate time series where the dependencies are not known in advance. In this paper, we propose a general graph neural network framework designed specifically for multivariate time series data. Our approach automatically extracts the uni-directed relations among variables through a graph learning module, into which external knowledge like variable attributes can be easily integrated. A novel mix-hop propagation layer and a dilated inception layer are further proposed to capture the spatial and temporal dependencies within the time series. The graph learning, graph convolution, and temporal convolution modules are jointly learned in an end-to-end framework. Experimental results show that our proposed model outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets and achieves on-par performance with other approaches on two traffic datasets which provide extra structural information.

北京阿比特科技有限公司