亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Online contention resolution schemes (OCRSs) are effective rounding techniques for online stochastic combinatorial optimization problems. These schemes randomly and sequentially round a fractional solution to a relaxed problem that can be formulated in advance. We propose OCRSs for online stochastic generalized assignment problems. In the OCRSs problem, sequentially arriving items are packed into a single knapsack, and their sizes are revealed only after insertion. The goal of the problem is to maximize the acceptance probability, which is the smallest probability among the items of being placed in the knapsack. Since the item sizes are unknown beforehand, a capacity overflow may occur. We consider two distinct settings: the hard constraint, where items that cause overflow are rejected, and the soft constraint, where such items are accepted. Under the hard constraint setting, we present an algorithm with an acceptance probability of $1/3$, and we also prove that no algorithm can achieve an acceptance probability greater than $3/7$. Under the soft constraint setting, we propose an algorithm with an acceptance probability of $1/2$, and we show that this is best possible.

相關內容

This paper addresses the important need for advanced techniques in continuously allocating workloads on shared infrastructures in data centers, a problem arising due to the growing popularity and scale of cloud computing. It particularly emphasizes the scarcity of research ensuring guaranteed capacity in capacity reservations during large-scale failures. To tackle these issues, the paper presents scalable solutions for resource management. It builds on the prior establishment of capacity reservation in cluster management systems and the two-level resource allocation problem addressed by the Resource Allowance System (RAS). Recognizing the limitations of Mixed Integer Linear Programming (MILP) for server assignment in a dynamic environment, this paper proposes the use of Deep Reinforcement Learning (DRL), which has been successful in achieving long-term optimal results for time-varying systems. A novel two-level design that utilizes a DRL-based algorithm is introduced to solve optimal server-to-reservation assignment, taking into account of fault tolerance, server movement minimization, and network affinity requirements due to the impracticality of directly applying DRL algorithms to large-scale instances with millions of decision variables. The paper explores the interconnection of these levels and the benefits of such an approach for achieving long-term optimal results in the context of large-scale cloud systems. We further show in the experiment section that our two-level DRL approach outperforms the MIP solver and heuristic approaches and exhibits significantly reduced computation time compared to the MIP solver. Specifically, our two-level DRL approach performs 15% better than the MIP solver on minimizing the overall cost. Also, it uses only 26 seconds to execute 30 rounds of decision making, while the MIP solver needs nearly an hour.

The $L_{\infty}$ star discrepancy is a measure for the regularity of a finite set of points taken from $[0,1)^d$. Low discrepancy point sets are highly relevant for Quasi-Monte Carlo methods in numerical integration and several other applications. Unfortunately, computing the $L_{\infty}$ star discrepancy of a given point set is known to be a hard problem, with the best exact algorithms falling short for even moderate dimensions around 8. However, despite the difficulty of finding the global maximum that defines the $L_{\infty}$ star discrepancy of the set, local evaluations at selected points are inexpensive. This makes the problem tractable by black-box optimization approaches. In this work we compare 8 popular numerical black-box optimization algorithms on the $L_{\infty}$ star discrepancy computation problem, using a wide set of instances in dimensions 2 to 15. We show that all used optimizers perform very badly on a large majority of the instances and that in many cases random search outperforms even the more sophisticated solvers. We suspect that state-of-the-art numerical black-box optimization techniques fail to capture the global structure of the problem, an important shortcoming that may guide their future development. We also provide a parallel implementation of the best-known algorithm to compute the discrepancy.

An approach is introduced for comparing the estimated states of stochastic compartmental models for an epidemic or biological process with analytically obtained solutions from the corresponding system of ordinary differential equations (ODEs). Positive integer valued samples from a stochastic model are generated numerically at discrete time intervals using either the Reed-Frost chain Binomial or Gillespie algorithm. The simulated distribution of realisations is compared with an exact solution obtained analytically from the ODE model. Using this novel methodology this work demonstrates it is feasible to check that the realisations from the stochastic compartmental model adhere to the ODE model they represent. There is no requirement for the model to be in any particular state or limit. These techniques are developed using the stochastic compartmental model for a susceptible-infected-recovered (SIR) epidemic process. The Lotka-Volterra model is then used as an example of the generality of the principles developed here. This approach presents a way of testing/benchmarking the numerical solutions of stochastic compartmental models, e.g. using unit tests, to check that the computer code along with its corresponding algorithm adheres to the underlying ODE model.

Given the high incidence of cardio and cerebrovascular diseases (CVD), and its association with morbidity and mortality, its prevention is a major public health issue. A high level of blood pressure is a well-known risk factor for these events and an increasing number of studies suggest that blood pressure variability may also be an independent risk factor. However, these studies suffer from significant methodological weaknesses. In this work we propose a new location-scale joint model for the repeated measures of a marker and competing events. This joint model combines a mixed model including a subject-specific and time-dependent residual variance modeled through random effects, and cause-specific proportional intensity models for the competing events. The risk of events may depend simultaneously on the current value of the variance, as well as, the current value and the current slope of the marker trajectory. The model is estimated by maximizing the likelihood function using the Marquardt-Levenberg algorithm. The estimation procedure is implemented in a R-package and is validated through a simulation study. This model is applied to study the association between blood pressure variability and the risk of CVD and death from other causes. Using data from a large clinical trial on the secondary prevention of stroke, we find that the current individual variability of blood pressure is associated with the risk of CVD and death. Moreover, the comparison with a model without heterogeneous variance shows the importance of taking into account this variability in the goodness-of-fit and for dynamic predictions.

In this paper, we consider the low rank structure of the reward sequence of the pure exploration problems. Firstly, we propose the separated setting in pure exploration problem, where the exploration strategy cannot receive the feedback of its explorations. Due to this separation, it requires that the exploration strategy to sample the arms obliviously. By involving the kernel information of the reward vectors, we provide efficient algorithms for both time-varying and fixed cases with regret bound $O(d\sqrt{(\ln N)/n})$. Then, we show the lower bound to the pure exploration in multi-armed bandits with low rank sequence. There is an $O(\sqrt{\ln N})$ gap between our upper bound and the lower bound.

In this article, we propose a 6N-dimensional stochastic differential equation (SDE), modelling the activity of N coupled populations of neurons in the brain. This equation extends the Jansen and Rit neural mass model, which has been introduced to describe human electroencephalography (EEG) rhythms, in particular signals with epileptic activity. Our contributions are threefold: First, we introduce this stochastic N-population model and construct a reliable and efficient numerical method for its simulation, extending a splitting procedure for one neural population. Second, we present a modified Sequential Monte Carlo Approximate Bayesian Computation (SMC-ABC) algorithm to infer both the continuous and the discrete model parameters, the latter describing the coupling directions within the network. The proposed algorithm further develops a previous reference-table acceptance rejection ABC method, initially proposed for the inference of one neural population. On the one hand, the considered SMC-ABC approach reduces the computational cost due to the basic acceptance-rejection scheme. On the other hand, it is designed to account for both marginal and coupled interacting dynamics, allowing to identify the directed connectivity structure. Third, we illustrate the derived algorithm on both simulated data and real multi-channel EEG data, aiming to infer the brain's connectivity structure during epileptic seizure. The proposed algorithm may be used for parameter and network estimation in other multi-dimensional coupled SDEs for which a suitable numerical simulation method can be derived.

Optimal values and solutions of empirical approximations of stochastic optimization problems can be viewed as statistical estimators of their true values. From this perspective, it is important to understand the asymptotic behavior of these estimators as the sample size goes to infinity. This area of study has a long tradition in stochastic programming. However, the literature is lacking consistency analysis for problems in which the decision variables are taken from an infinite dimensional space, which arise in optimal control, scientific machine learning, and statistical estimation. By exploiting the typical problem structures found in these applications that give rise to hidden norm compactness properties for solution sets, we prove consistency results for nonconvex risk-averse stochastic optimization problems formulated in infinite dimensional space. The proof is based on several crucial results from the theory of variational convergence. The theoretical results are demonstrated for several important problem classes arising in the literature.

Monte Carlo methods - such as Markov chain Monte Carlo (MCMC) and piecewise deterministic Markov process (PDMP) samplers - provide asymptotically exact estimators of expectations under a target distribution. There is growing interest in alternatives to this asymptotic regime, in particular in constructing estimators that are exact in the limit of an infinite amount of computing processors, rather than in the limit of an infinite number of Markov iterations. In particular, Jacob et al. (2020) introduced coupled MCMC estimators to remove the non-asymptotic bias, resulting in MCMC estimators that can be embarrassingly parallelised. In this work, we extend the estimators of Jacob et al. (2020) to the continuous-time context and derive couplings for the bouncy, the boomerang and the coordinate samplers. Some preliminary empirical results are included that demonstrate the reasonable scaling of our method with the dimension of the target.

Separating signals from an additive mixture may be an unnecessarily hard problem when one is only interested in specific properties of a given signal. In this work, we tackle simpler "statistical component separation" problems that focus on recovering a predefined set of statistical descriptors of a target signal from a noisy mixture. Assuming access to samples of the noise process, we investigate a method devised to match the statistics of the solution candidate corrupted by noise samples with those of the observed mixture. We first analyze the behavior of this method using simple examples with analytically tractable calculations. Then, we apply it in an image denoising context employing 1) wavelet-based descriptors, 2) ConvNet-based descriptors on astrophysics and ImageNet data. In the case of 1), we show that our method better recovers the descriptors of the target data than a standard denoising method in most situations. Additionally, despite not constructed for this purpose, it performs surprisingly well in terms of peak signal-to-noise ratio on full signal reconstruction. In comparison, representation 2) appears less suitable for image denoising. Finally, we extend this method by introducing a diffusive stepwise algorithm which gives a new perspective to the initial method and leads to promising results for image denoising under specific circumstances.

We study generalizations of online bipartite matching in which each arriving vertex (customer) views a ranked list of offline vertices (products) and matches to (purchases) the first one they deem acceptable. The number of products that the customer has patience to view can be stochastic and dependent on the products seen. We develop a framework that views the interaction with each customer as an abstract resource consumption process, and derive new results for these online matching problems under the adversarial, non-stationary, and IID arrival models, assuming we can (approximately) solve the product ranking problem for each single customer. To that end, we show new results for product ranking under two cascade-click models: an optimal algorithm when each item has its own hazard rate for making the customer depart, and a 1/2-approximate algorithm when the customer has a general item-independent patience distribution. We also present a constant-factor 0.027-approximate algorithm in a new model where items are not initially available and arrive over time. We complement these positive results by presenting three additional negative results relating to these problems.

北京阿比特科技有限公司