Natural language processing has made progress in incorporating human context into its models, but whether it is more effective to use group-wise attributes (e.g., over-45-year-olds) or model individuals remains open. Group attributes are technically easier but coarse: not all 45-year-olds write the same way. In contrast, modeling individuals captures the complexity of each person's identity. It allows for a more personalized representation, but we may have to model an infinite number of users and require data that may be impossible to get. We compare modeling human context via group attributes, individual users, and combined approaches. Combining group and individual features significantly benefits user-level regression tasks like age estimation or personality assessment from a user's documents. Modeling individual users significantly improves the performance of single document-level classification tasks like stance and topic detection. We also find that individual-user modeling does well even without user's historical data.
Transformer-based models have demonstrated remarkable in-context learning capabilities, prompting extensive research into its underlying mechanisms. Recent studies have suggested that Transformers can implement first-order optimization algorithms for in-context learning and even second order ones for the case of linear regression. In this work, we study whether Transformers can perform higher order optimization methods, beyond the case of linear regression. We establish that linear attention Transformers with ReLU layers can approximate second order optimization algorithms for the task of logistic regression and achieve $\epsilon$ error with only a logarithmic to the error more layers. As a by-product we demonstrate the ability of even linear attention-only Transformers in implementing a single step of Newton's iteration for matrix inversion with merely two layers. These results suggest the ability of the Transformer architecture to implement complex algorithms, beyond gradient descent.
With the advancement of language models (LMs), their exposure to private data is increasingly inevitable, and their deployment (especially for smaller ones) on personal devices, such as PCs and smartphones, has become a prevailing trend. In contexts laden with user information, enabling models to both safeguard user privacy and execute commands efficiently emerges as an essential research imperative. In this paper, we propose CoGenesis, a collaborative generation framework integrating large (hosted on cloud infrastructure) and small models (deployed on local devices) to address privacy concerns logically. Initially, we design a pipeline to create personalized writing instruction datasets enriched with extensive context details as the testbed of this research issue. Subsequently, we introduce two variants of CoGenesis based on sketch and logits respectively. Our experimental findings, based on our synthesized dataset and two additional open-source datasets, indicate that: 1) Large-scale models perform well when provided with user context but struggle in the absence of such context. 2) While specialized smaller models fine-tuned on the synthetic dataset show promise, they still lag behind their larger counterparts. 3) Our CoGenesis framework, utilizing mixed-scale models, showcases competitive performance, providing a feasible solution to privacy issues.
The use of unsupervised learning to identify patient subgroups has emerged as a potentially promising direction to improve the efficiency of Intensive Care Units (ICUs). By identifying subgroups of patients with similar levels of medical resource need, ICUs could be restructured into a collection of smaller subunits, each catering to a specific group. However, it is unclear whether common patient subgroups exist across different ICUs, which would determine whether ICU restructuring could be operationalised in a standardised manner. In this paper, we tested the hypothesis that common ICU patient subgroups exist by examining whether the results from one existing study generalise to a different dataset. We extracted 16 features representing medical resource need and used consensus clustering to derive patient subgroups, replicating the previous study. We found limited similarities between our results and those of the previous study, providing evidence against the hypothesis. Our findings imply that there is significant variation between ICUs; thus, a standardised restructuring approach is unlikely to be appropriate. Instead, potential efficiency gains might be greater when the number and nature of the subunits are tailored to each ICU individually.
There is an ongoing debate regarding the potential of Large Language Models (LLMs) as foundational models seamlessly integrated with Cyber-Physical Systems (CPS) for interpreting the physical world. In this paper, we carry out a case study to answer the following question: Are LLMs capable of zero-shot human activity recognition (HAR). Our study, HARGPT, presents an affirmative answer by demonstrating that LLMs can comprehend raw IMU data and perform HAR tasks in a zero-shot manner, with only appropriate prompts. HARGPT inputs raw IMU data into LLMs and utilizes the role-play and think step-by-step strategies for prompting. We benchmark HARGPT on GPT4 using two public datasets of different inter-class similarities and compare various baselines both based on traditional machine learning and state-of-the-art deep classification models. Remarkably, LLMs successfully recognize human activities from raw IMU data and consistently outperform all the baselines on both datasets. Our findings indicate that by effective prompting, LLMs can interpret raw IMU data based on their knowledge base, possessing a promising potential to analyze raw sensor data of the physical world effectively.
Large language models have demonstrated remarkable potential in various tasks, however, there remains a significant scarcity of open-source models and data for specific domains. Previous works have primarily focused on manually specifying resources and collecting high-quality data on specific domains, which significantly consume time and effort. To address this limitation, we propose an efficient data collection method $\textit{Query of CC}$ based on large language models. This method bootstraps seed information through a large language model and retrieves related data from public corpora. It not only collects knowledge-related data for specific domains but unearths the data with potential reasoning procedures. Through the application of this method, we have curated a high-quality dataset called KNOWLEDGE PILE, encompassing four major domains, including stem and humanities sciences, among others. Experimental results demonstrate that KNOWLEDGE PILE significantly improves the performance of large language models in mathematical and knowledge-related reasoning ability tests. To facilitate academic sharing, we open-source our dataset and code, providing valuable support to the academic community.
Growing research in sign language recognition, generation, and translation AI has been accompanied by calls for ethical development of such technologies. While these works are crucial to helping individual researchers do better, there is a notable lack of discussion of systemic biases or analysis of rhetoric that shape the research questions and methods in the field, especially as it remains dominated by hearing non-signing researchers. Therefore, we conduct a systematic review of 101 recent papers in sign language AI. Our analysis identifies significant biases in the current state of sign language AI research, including an overfocus on addressing perceived communication barriers, a lack of use of representative datasets, use of annotations lacking linguistic foundations, and development of methods that build on flawed models. We take the position that the field lacks meaningful input from Deaf stakeholders, and is instead driven by what decisions are the most convenient or perceived as important to hearing researchers. We end with a call to action: the field must make space for Deaf researchers to lead the conversation in sign language AI.
Data contamination in evaluation is getting increasingly prevalent with the emergence of language models pre-trained on super large, automatically crawled corpora. This problem leads to significant challenges in the accurate assessment of model capabilities and generalisations. In this paper, we propose LatestEval, an automatic method that leverages the most recent texts to create uncontaminated reading comprehension evaluations. LatestEval avoids data contamination by only using texts published within a recent time window, ensuring no overlap with the training corpora of pre-trained language models. We develop the LatestEval automated pipeline to 1) gather the latest texts; 2) identify key information, and 3) construct questions targeting the information while removing the existing answers from the context. This encourages models to infer the answers themselves based on the remaining context, rather than just copy-paste. Our experiments demonstrate that language models exhibit negligible memorisation behaviours on LatestEval as opposed to previous benchmarks, suggesting a significantly reduced risk of data contamination and leading to a more robust evaluation. Data and code are publicly available at: //github.com/liyucheng09/LatestEval.
When large language models are trained on private data, it can be a significant privacy risk for them to memorize and regurgitate sensitive information. In this work, we propose a new practical data extraction attack that we call "neural phishing". This attack enables an adversary to target and extract sensitive or personally identifiable information (PII), e.g., credit card numbers, from a model trained on user data with upwards of 10% attack success rates, at times, as high as 50%. Our attack assumes only that an adversary can insert as few as 10s of benign-appearing sentences into the training dataset using only vague priors on the structure of the user data.
The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.
For deploying a deep learning model into production, it needs to be both accurate and compact to meet the latency and memory constraints. This usually results in a network that is deep (to ensure performance) and yet thin (to improve computational efficiency). In this paper, we propose an efficient method to train a deep thin network with a theoretic guarantee. Our method is motivated by model compression. It consists of three stages. In the first stage, we sufficiently widen the deep thin network and train it until convergence. In the second stage, we use this well-trained deep wide network to warm up (or initialize) the original deep thin network. This is achieved by letting the thin network imitate the immediate outputs of the wide network from layer to layer. In the last stage, we further fine tune this well initialized deep thin network. The theoretical guarantee is established by using mean field analysis, which shows the advantage of layerwise imitation over traditional training deep thin networks from scratch by backpropagation. We also conduct large-scale empirical experiments to validate our approach. By training with our method, ResNet50 can outperform ResNet101, and BERT_BASE can be comparable with BERT_LARGE, where both the latter models are trained via the standard training procedures as in the literature.