Transformer-based models have demonstrated remarkable in-context learning capabilities, prompting extensive research into its underlying mechanisms. Recent studies have suggested that Transformers can implement first-order optimization algorithms for in-context learning and even second order ones for the case of linear regression. In this work, we study whether Transformers can perform higher order optimization methods, beyond the case of linear regression. We establish that linear attention Transformers with ReLU layers can approximate second order optimization algorithms for the task of logistic regression and achieve $\epsilon$ error with only a logarithmic to the error more layers. As a by-product we demonstrate the ability of even linear attention-only Transformers in implementing a single step of Newton's iteration for matrix inversion with merely two layers. These results suggest the ability of the Transformer architecture to implement complex algorithms, beyond gradient descent.
A critical problem in deep learning is that systems learn inappropriate biases, resulting in their inability to perform well on minority groups. This has led to the creation of multiple algorithms that endeavor to mitigate bias. However, it is not clear how effective these methods are. This is because study protocols differ among papers, systems are tested on datasets that fail to test many forms of bias, and systems have access to hidden knowledge or are tuned specifically to the test set. To address this, we introduce an improved evaluation protocol, sensible metrics, and a new dataset, which enables us to ask and answer critical questions about bias mitigation algorithms. We evaluate seven state-of-the-art algorithms using the same network architecture and hyperparameter selection policy across three benchmark datasets. We introduce a new dataset called Biased MNIST that enables assessment of robustness to multiple bias sources. We use Biased MNIST and a visual question answering (VQA) benchmark to assess robustness to hidden biases. Rather than only tuning to the test set distribution, we study robustness across different tuning distributions, which is critical because for many applications the test distribution may not be known during development. We find that algorithms exploit hidden biases, are unable to scale to multiple forms of bias, and are highly sensitive to the choice of tuning set. Based on our findings, we implore the community to adopt more rigorous assessment of future bias mitigation methods. All data, code, and results are publicly available at: //github.com/erobic/bias-mitigators.
Trained models are often composed with post-hoc transforms such as temperature scaling (TS), ensembling and stochastic weight averaging (SWA) to improve performance, robustness, uncertainty estimation, etc. However, such transforms are typically applied only after the base models have already been finalized by standard means. In this paper, we challenge this practice with an extensive empirical study. In particular, we demonstrate a phenomenon that we call post-hoc reversal, where performance trends are reversed after applying these post-hoc transforms. This phenomenon is especially prominent in high-noise settings. For example, while base models overfit badly early in training, both conventional ensembling and SWA favor base models trained for more epochs. Post-hoc reversal can also suppress the appearance of double descent and mitigate mismatches between test loss and test error seen in base models. Based on our findings, we propose post-hoc selection, a simple technique whereby post-hoc metrics inform model development decisions such as early stopping, checkpointing, and broader hyperparameter choices. Our experimental analyses span real-world vision, language, tabular and graph datasets from domains like satellite imaging, language modeling, census prediction and social network analysis. On an LLM instruction tuning dataset, post-hoc selection results in > 1.5x MMLU improvement compared to naive selection. Code is available at //github.com/rishabh-ranjan/post-hoc-reversal.
In-context learning (ICL) is now a common method for teaching large language models (LLMs) new tasks: given labeled examples in the input context, the LLM learns to perform the task without weight updates. Do models guided via ICL infer the underlying structure of the task defined by the context, or do they rely on superficial heuristics that only generalize to identically distributed examples? We address this question using transformations tasks and an NLI task that assess sensitivity to syntax - a requirement for robust language understanding. We further investigate whether out-of-distribution generalization can be improved via chain-of-thought prompting, where the model is provided with a sequence of intermediate computation steps that illustrate how the task ought to be performed. In experiments with models from the GPT, PaLM, and Llama 2 families, we find large variance across LMs. The variance is explained more by the composition of the pre-training corpus and supervision methods than by model size; in particular, models pre-trained on code generalize better, and benefit more from chain-of-thought prompting.
Large vision-language models (LVLMs) have recently achieved rapid progress, sparking numerous studies to evaluate their multi-modal capabilities. However, we dig into current evaluation works and identify two primary issues: 1) Visual content is unnecessary for many samples. The answers can be directly inferred from the questions and options, or the world knowledge embedded in LLMs. This phenomenon is prevalent across current benchmarks. For instance, GeminiPro achieves 42.9% on the MMMU benchmark without any visual input, and outperforms the random choice baseline across six benchmarks over 24% on average. 2) Unintentional data leakage exists in LLM and LVLM training. LLM and LVLM could still answer some visual-necessary questions without visual content, indicating the memorizing of these samples within large-scale training data. For example, Sphinx-X-MoE gets 43.6% on MMMU without accessing images, surpassing its LLM backbone with 17.9%. Both problems lead to misjudgments of actual multi-modal gains and potentially misguide the study of LVLM. To this end, we present MMStar, an elite vision-indispensable multi-modal benchmark comprising 1,500 samples meticulously selected by humans. MMStar benchmarks 6 core capabilities and 18 detailed axes, aiming to evaluate LVLMs' multi-modal capacities with carefully balanced and purified samples. These samples are first roughly selected from current benchmarks with an automated pipeline, human review is then involved to ensure each curated sample exhibits visual dependency, minimal data leakage, and requires advanced multi-modal capabilities. Moreover, two metrics are developed to measure data leakage and actual performance gain in multi-modal training. We evaluate 16 leading LVLMs on MMStar to assess their multi-modal capabilities, and on 7 benchmarks with the proposed metrics to investigate their data leakage and actual multi-modal gain.
The End-to-end (E2E) learning-based approach has great potential to reshape the existing communication systems by replacing the transceivers with deep neural networks. To this end, the E2E learning approach needs to assume the availability of prior channel information to mathematically formulate a differentiable channel layer for the backpropagation (BP) of the error gradients, thereby jointly optimizing the transmitter and the receiver. However, accurate and instantaneous channel state information is hardly obtained in practical wireless communication scenarios. Moreover, the existing E2E learning-based solutions exhibit limited performance in data transmissions with large block lengths. In this article, these practical issues are addressed by our proposed deep deterministic policy gradient-based E2E communication system. In particular, the proposed solution utilizes a reward feedback mechanism to train both the transmitter and the receiver, which alleviates the information loss of error gradients during BP. In addition, a convolutional neural network (CNN)-based architecture is developed to mitigate the curse of dimensionality problem when transmitting messages with large block lengths. Extensive simulations then demonstrate that our proposed solution can not only jointly train the transmitter and the receiver simultaneously without requiring the prior channel knowledge but also can obtain significant performance improvement on block error rate compared to state-of-the-art solutions.
E-graphs have emerged as a versatile data structure with applications in synthesis, optimization, and verification through techniques such as equality saturation. This paper introduces Python bindings for the experimental egglog library (previously called egg-smol), which aims to bring the benefits of e-graphs to the Python ecosystem. The bindings offer a high-level, Pythonic API providing an accessible and familiar interface for Python users. By integrating e-graph techniques with Python, we hope to enable collaboration and innovation across various domains in the scientific computing and machine learning communities. We discuss the advantages of using Python bindings for both Python and existing egg-smol users, as well as possible future directions for development.
Sentence transformers are language models designed to perform semantic search. This study investigates the capacity of sentence transformers, fine-tuned on general question-answering datasets for asymmetric semantic search, to associate descriptions of human-generated routes across Great Britain with queries often used to describe hiking experiences. We find that sentence transformers have some zero-shot capabilities to understand quasi-geospatial concepts, such as route types and difficulty, suggesting their potential utility for routing recommendation systems.
Robust, faithful and harm-free pronoun use for individuals is an important goal for language models as their use increases, but prior work tends to study only one or two of these components at a time. To measure progress towards the combined goal, we introduce the task of pronoun use fidelity: given a context introducing a co-referring entity and pronoun, the task is to reuse the correct pronoun later, independent of potential distractors. We present a carefully-designed dataset of over 5 million instances to evaluate pronoun use fidelity in English, and we use it to evaluate 37 popular large language models across architectures (encoder-only, decoder-only and encoder-decoder) and scales (11M-70B parameters). We find that while models can mostly faithfully reuse previously-specified pronouns in the presence of no distractors, they are significantly worse at processing she/her/her, singular they and neopronouns. Additionally, models are not robustly faithful to pronouns, as they are easily distracted. With even one additional sentence containing a distractor pronoun, accuracy drops on average by 34%. With 5 distractor sentences, accuracy drops by 52% for decoder-only models and 13% for encoder-only models. We show that widely-used large language models are still brittle, with large gaps in reasoning and in processing different pronouns in a setting that is very simple for humans, and we encourage researchers in bias and reasoning to bridge them.
Medical image segmentation models adapting to new tasks in a training-free manner through in-context learning is an exciting advancement. Universal segmentation models aim to generalize across the diverse modality of medical images, yet their effectiveness often diminishes when applied to out-of-distribution (OOD) data modalities and tasks, requiring intricate fine-tuning of model for optimal performance. For addressing this challenge, we introduce SegICL, a novel approach leveraging In-Context Learning (ICL) for image segmentation. Unlike existing methods, SegICL has the capability to employ text-guided segmentation and conduct in-context learning with a small set of image-mask pairs, eliminating the need for training the model from scratch or fine-tuning for OOD tasks (including OOD modality and dataset). Extensive experimental validation of SegICL demonstrates a positive correlation between the number of prompt samples and segmentation performance on OOD modalities and tasks. This indicates that SegICL effectively address new segmentation tasks based on contextual information. Additionally, SegICL also exhibits comparable segmentation performance to mainstream models on OOD and in-distribution tasks. Our code will be released soon.
Non-convex optimization is ubiquitous in modern machine learning. Researchers devise non-convex objective functions and optimize them using off-the-shelf optimizers such as stochastic gradient descent and its variants, which leverage the local geometry and update iteratively. Even though solving non-convex functions is NP-hard in the worst case, the optimization quality in practice is often not an issue -- optimizers are largely believed to find approximate global minima. Researchers hypothesize a unified explanation for this intriguing phenomenon: most of the local minima of the practically-used objectives are approximately global minima. We rigorously formalize it for concrete instances of machine learning problems.