亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Competitions for shareable and limited resources have long been studied with strategic agents. In reality, agents often have to learn and maximize the rewards of the resources at the same time. To design an individualized competing policy, we model the competition between agents in a novel multi-player multi-armed bandit (MPMAB) setting where players are selfish and aim to maximize their own rewards. In addition, when several players pull the same arm, we assume that these players averagely share the arms' rewards by expectation. Under this setting, we first analyze the Nash equilibrium when arms' rewards are known. Subsequently, we propose a novel Selfish MPMAB with Averaging Allocation (SMAA) approach based on the equilibrium. We theoretically demonstrate that SMAA could achieve a good regret guarantee for each player when all players follow the algorithm. Additionally, we establish that no single selfish player can significantly increase their rewards through deviation, nor can they detrimentally affect other players' rewards without incurring substantial losses for themselves. We finally validate the effectiveness of the method in extensive synthetic experiments.

相關內容

Cognitive biases exert a significant influence on human thinking and decision-making. In order to identify how they influence the occurrence of architectural technical debt, a series of semi-structured interviews with software architects was performed. The results show which classes of architectural technical debt originate from cognitive biases, and reveal the antecedents of technical debt items (classes) through biases. This way, we analysed how and when cognitive biases lead to the creation of technical debt. We also identified a set of debiasing techniques that can be used in order to prevent the negative influence of cognitive biases. The observations of the role of organisational culture in the avoidance of inadvertent technical debt throw a new light on that issue.

Effective patient monitoring is vital for timely interventions and improved healthcare outcomes. Traditional monitoring systems often struggle to handle complex, dynamic environments with fluctuating vital signs, leading to delays in identifying critical conditions. To address this challenge, we propose a novel AI-driven patient monitoring framework using multi-agent deep reinforcement learning (DRL). Our approach deploys multiple learning agents, each dedicated to monitoring a specific physiological feature, such as heart rate, respiration, and temperature. These agents interact with a generic healthcare monitoring environment, learn the patients' behavior patterns, and make informed decisions to alert the corresponding Medical Emergency Teams (METs) based on the level of emergency estimated. In this study, we evaluate the performance of the proposed multi-agent DRL framework using real-world physiological and motion data from two datasets: PPG-DaLiA and WESAD. We compare the results with several baseline models, including Q-Learning, PPO, Actor-Critic, Double DQN, and DDPG, as well as monitoring frameworks like WISEML and CA-MAQL. Our experiments demonstrate that the proposed DRL approach outperforms all other baseline models, achieving more accurate monitoring of patient's vital signs. Furthermore, we conduct hyperparameter optimization to fine-tune the learning process of each agent. By optimizing hyperparameters, we enhance the learning rate and discount factor, thereby improving the agents' overall performance in monitoring patient health status. Our AI-driven patient monitoring system offers several advantages over traditional methods, including the ability to handle complex and uncertain environments, adapt to varying patient conditions, and make real-time decisions without external supervision.

Schema-guided dialogue state trackers can generalise to new domains without further training, yet they are sensitive to the writing style of the schemata. Augmenting the training set with human or synthetic schema paraphrases improves the model robustness to these variations but can be either costly or difficult to control. We propose to circumvent these issues by grounding the state tracking model in knowledge-seeking turns collected from the dialogue corpus as well as the schema. Including these turns in prompts during finetuning and inference leads to marked improvements in model robustness, as demonstrated by large average joint goal accuracy and schema sensitivity improvements on SGD and SGD-X.

Memory interference may heavily inflate task execution times in Heterogeneous Systems-on-Chips (HeSoCs). Knowing worst-case interference is consequently fundamental for supporting the correct execution of time-sensitive applications. In most of the literature, worst-case interference is assumed to be generated by, and therefore is estimated through read-intensive synthetic workloads with no caching. Yet these workloads do not always generate worst-case interference. This is the consequence of the general results reported in this work. By testing on multiple architectures, we determined that the highest interference generation traffic pattern is actually hardware dependant, and that making assumptions could lead to a severe underestimation of the worst-case (in our case, of more than 9x).

Choosing an appropriate representation of the environment for the underlying decision-making process of the RL agent is not always straightforward. The state representation should be inclusive enough to allow the agent to informatively decide on its actions and compact enough to increase sample efficiency for policy training. Given this outlook, this work examines the effect of various state representations in incentivizing the agent to solve a specific robotic task: antipodal and planar object grasping. A continuum of state representation abstractions is defined, starting from a model-based approach with complete system knowledge, through hand-crafted numerical, to image-based representations with decreasing level of induced task-specific knowledge. We examine the effects of each representation in the ability of the agent to solve the task in simulation and the transferability of the learned policy to the real robot. The results show that RL agents using numerical states can perform on par with non-learning baselines. Furthermore, we find that agents using image-based representations from pre-trained environment embedding vectors perform better than end-to-end trained agents, and hypothesize that task-specific knowledge is necessary for achieving convergence and high success rates in robot control.

Modern autonomous systems are purposed for many challenging scenarios, where agents will face unexpected events and complicated tasks. The presence of disturbance noise with control command and unknown inputs can negatively impact robot performance. Previous research of joint input and state estimation separately studied the continuous and discrete cases without any prior information. This paper combines the continuous and discrete input cases into a unified theory based on the Expectation-Maximum (EM) algorithm. By introducing prior knowledge of events as the constraint, inequality optimization problems are formulated to determine a gain matrix or dynamic weights to realize an optimal input estimation with lower variance and more accurate decision-making. Finally, statistical results from experiments show that our algorithm owns 81\% improvement of the variance than KF and 47\% improvement than RKF in continuous space; a remarkable improvement of right decision-making probability of our input estimator in discrete space, identification ability is also analyzed by experiments.

Autonomous agents have long been a prominent research topic in the academic community. Previous research in this field often focuses on training agents with limited knowledge within isolated environments, which diverges significantly from the human learning processes, and thus makes the agents hard to achieve human-like decisions. Recently, through the acquisition of vast amounts of web knowledge, large language models (LLMs) have demonstrated remarkable potential in achieving human-level intelligence. This has sparked an upsurge in studies investigating autonomous agents based on LLMs. To harness the full potential of LLMs, researchers have devised diverse agent architectures tailored to different applications. In this paper, we present a comprehensive survey of these studies, delivering a systematic review of the field of autonomous agents from a holistic perspective. More specifically, our focus lies in the construction of LLM-based agents, for which we propose a unified framework that encompasses a majority of the previous work. Additionally, we provide a summary of the various applications of LLM-based AI agents in the domains of social science, natural science, and engineering. Lastly, we discuss the commonly employed evaluation strategies for LLM-based AI agents. Based on the previous studies, we also present several challenges and future directions in this field. To keep track of this field and continuously update our survey, we maintain a repository for the related references at //github.com/Paitesanshi/LLM-Agent-Survey.

Graphs are important data representations for describing objects and their relationships, which appear in a wide diversity of real-world scenarios. As one of a critical problem in this area, graph generation considers learning the distributions of given graphs and generating more novel graphs. Owing to their wide range of applications, generative models for graphs, which have a rich history, however, are traditionally hand-crafted and only capable of modeling a few statistical properties of graphs. Recent advances in deep generative models for graph generation is an important step towards improving the fidelity of generated graphs and paves the way for new kinds of applications. This article provides an extensive overview of the literature in the field of deep generative models for graph generation. Firstly, the formal definition of deep generative models for the graph generation and the preliminary knowledge are provided. Secondly, taxonomies of deep generative models for both unconditional and conditional graph generation are proposed respectively; the existing works of each are compared and analyzed. After that, an overview of the evaluation metrics in this specific domain is provided. Finally, the applications that deep graph generation enables are summarized and five promising future research directions are highlighted.

Seamlessly interacting with humans or robots is hard because these agents are non-stationary. They update their policy in response to the ego agent's behavior, and the ego agent must anticipate these changes to co-adapt. Inspired by humans, we recognize that robots do not need to explicitly model every low-level action another agent will make; instead, we can capture the latent strategy of other agents through high-level representations. We propose a reinforcement learning-based framework for learning latent representations of an agent's policy, where the ego agent identifies the relationship between its behavior and the other agent's future strategy. The ego agent then leverages these latent dynamics to influence the other agent, purposely guiding them towards policies suitable for co-adaptation. Across several simulated domains and a real-world air hockey game, our approach outperforms the alternatives and learns to influence the other agent.

Collaborative filtering often suffers from sparsity and cold start problems in real recommendation scenarios, therefore, researchers and engineers usually use side information to address the issues and improve the performance of recommender systems. In this paper, we consider knowledge graphs as the source of side information. We propose MKR, a Multi-task feature learning approach for Knowledge graph enhanced Recommendation. MKR is a deep end-to-end framework that utilizes knowledge graph embedding task to assist recommendation task. The two tasks are associated by cross&compress units, which automatically share latent features and learn high-order interactions between items in recommender systems and entities in the knowledge graph. We prove that cross&compress units have sufficient capability of polynomial approximation, and show that MKR is a generalized framework over several representative methods of recommender systems and multi-task learning. Through extensive experiments on real-world datasets, we demonstrate that MKR achieves substantial gains in movie, book, music, and news recommendation, over state-of-the-art baselines. MKR is also shown to be able to maintain a decent performance even if user-item interactions are sparse.

北京阿比特科技有限公司