Although many deep learning (DL) algorithms have been proposed for the IMU-based HAR domain, traditional machine learning that utilizes handcrafted time series features (TSFs) still often performs well. It is not rare that combinations among DL and TSFs show better accuracy than DL-only approaches. However, there is a problem with time series features in IMU-based HAR. The amount of derived features can vary greatly depending on the method used to select the 3D basis. Fortunately, DL's strengths include capturing the features of input data and adaptively deriving parameters. Thus, as a new DNN model for IMU-based human activity recognition (HAR), this paper proposes rTsfNet, a DNN model with Multi-head 3D Rotation and Time Series Feature Extraction. rTsfNet automatically selects 3D bases from which features should be derived by extracting 3D rotation parameters within the DNN. Then, time series features (TSFs), based on many researchers' wisdom, are derived to achieve HAR using MLP. Although rTsfNet is a model that does not use CNN, it achieved higher accuracy than existing models under well-managed benchmark conditions and multiple datasets: UCI HAR, PAMAP2, Daphnet, and OPPORTUNITY, all of which target different activities.
Since the resurgence of deep learning, vision-language models (VLMs) enhanced by large language models (LLMs) have grown exponentially in popularity. However, while LLMs can utilize extensive background knowledge and task information with in-context learning, most VLMs still struggle with understanding complex multi-modal prompts with multiple images, making VLMs less effective in downstream vision-language tasks. In this paper, we address the limitation above by 1) introducing vision-language Model with Multi-Modal In-Context Learning(MMICL), a new approach to allow the VLM to deal with multi-modal inputs efficiently; 2) proposing a novel context scheme to augment the in-context learning ability of the VLM; 3) constructing the Multi-modal In-Context Learning (MIC) dataset, designed to enhance the VLM's ability to understand complex multi-modal prompts. Our experiments confirm that MMICL achieves new state-of-the-art zero-shot performance on a wide range of general vision-language tasks, especially for complex benchmarks, including MME and MMBench. Our analysis demonstrates that MMICL effectively tackles the challenge of complex multi-modal prompt understanding and emerges the impressive ICL ability. Furthermore, we observe that MMICL successfully alleviates language bias in VLMs, a common issue for VLMs that often leads to hallucination when faced with extensive textual context. Our code, dataset, dataset tool, and model are available at //github.com/PKUnlp-icler/MIC
In reinforcement learning (RL), exploiting environmental symmetries can significantly enhance efficiency, robustness, and performance. However, ensuring that the deep RL policy and value networks are respectively equivariant and invariant to exploit these symmetries is a substantial challenge. Related works try to design networks that are equivariant and invariant by construction, limiting them to a very restricted library of components, which in turn hampers the expressiveness of the networks. This paper proposes a method to construct equivariant policies and invariant value functions without specialized neural network components, which we term equivariant ensembles. We further add a regularization term for adding inductive bias during training. In a map-based path planning case study, we show how equivariant ensembles and regularization benefit sample efficiency and performance.
The recent advances in deep learning (DL) have been accelerated by access to large-scale data and compute. These large-scale resources have been used to train progressively larger models which are resource intensive in terms of compute, data, energy, and carbon emissions. These costs are becoming a new type of entry barrier to researchers and practitioners with limited access to resources at such scale, particularly in the Global South. In this work, we take a comprehensive look at the landscape of existing DL models for vision tasks and demonstrate their usefulness in settings where resources are limited. To account for the resource consumption of DL models, we introduce a novel measure to estimate the performance per resource unit, which we call the PePR score. Using a diverse family of 131 unique DL architectures (spanning 1M to 130M trainable parameters) and three medical image datasets, we capture trends about the performance-resource trade-offs. In applications like medical image analysis, we argue that small-scale, specialized models are better than striving for large-scale models. Furthermore, we show that using pretrained models can significantly reduce the computational resources and data required. We hope this work will encourage the community to focus on improving AI equity by developing methods and models with smaller resource footprints.
In recent years, distributed machine learning has garnered significant attention. However, privacy continues to be an unresolved issue within this field. Multi-key homomorphic encryption over torus (MKTFHE) is one of the promising candidates for addressing this concern. Nevertheless, there may be security risks in the decryption of MKTFHE. Moreover, to our best known, the latest works about MKTFHE only support Boolean operation and linear operation which cannot directly compute the non-linear function like Sigmoid. Therefore, it is still hard to perform common machine learning such as logistic regression and neural networks in high performance. In this paper, we first discover a possible attack on the existing distributed decryption protocol for MKTFHE and subsequently introduce secret sharing to propose a securer one. Next, we design a new MKTFHE-friendly activation function via \emph{homogenizer} and \emph{compare quads}. Finally, we utilize them to implement logistic regression and neural network training in MKTFHE. Comparing the efficiency and accuracy between using Taylor polynomials of Sigmoid and our proposed function as an activation function, the experiments show that the efficiency of our function is 10 times higher than using 7-order Taylor polynomials straightly and the accuracy of the training model is similar to using a high-order polynomial as an activation function scheme.
Self-supervised learning (SSL) is at the origin of unprecedented improvements in many different domains including computer vision and natural language processing. Speech processing drastically benefitted from SSL as most of the current domain-related tasks are now being approached with pre-trained models. This work introduces LeBenchmark 2.0 an open-source framework for assessing and building SSL-equipped French speech technologies. It includes documented, large-scale and heterogeneous corpora with up to 14,000 hours of heterogeneous speech, ten pre-trained SSL wav2vec 2.0 models containing from 26 million to one billion learnable parameters shared with the community, and an evaluation protocol made of six downstream tasks to complement existing benchmarks. LeBenchmark 2.0 also presents unique perspectives on pre-trained SSL models for speech with the investigation of frozen versus fine-tuned downstream models, task-agnostic versus task-specific pre-trained models as well as a discussion on the carbon footprint of large-scale model training. Overall, the newly introduced models trained on 14,000 hours of French speech outperform multilingual and previous LeBenchmark SSL models across the benchmark but also required up to four times more energy for pre-training.
The incredible development of federated learning (FL) has benefited various tasks in the domains of computer vision and natural language processing, and the existing frameworks such as TFF and FATE has made the deployment easy in real-world applications. However, federated graph learning (FGL), even though graph data are prevalent, has not been well supported due to its unique characteristics and requirements. The lack of FGL-related framework increases the efforts for accomplishing reproducible research and deploying in real-world applications. Motivated by such strong demand, in this paper, we first discuss the challenges in creating an easy-to-use FGL package and accordingly present our implemented package FederatedScope-GNN (FS-G), which provides (1) a unified view for modularizing and expressing FGL algorithms; (2) comprehensive DataZoo and ModelZoo for out-of-the-box FGL capability; (3) an efficient model auto-tuning component; and (4) off-the-shelf privacy attack and defense abilities. We validate the effectiveness of FS-G by conducting extensive experiments, which simultaneously gains many valuable insights about FGL for the community. Moreover, we employ FS-G to serve the FGL application in real-world E-commerce scenarios, where the attained improvements indicate great potential business benefits. We publicly release FS-G, as submodules of FederatedScope, at //github.com/alibaba/FederatedScope to promote FGL's research and enable broad applications that would otherwise be infeasible due to the lack of a dedicated package.
Link prediction on knowledge graphs (KGs) is a key research topic. Previous work mainly focused on binary relations, paying less attention to higher-arity relations although they are ubiquitous in real-world KGs. This paper considers link prediction upon n-ary relational facts and proposes a graph-based approach to this task. The key to our approach is to represent the n-ary structure of a fact as a small heterogeneous graph, and model this graph with edge-biased fully-connected attention. The fully-connected attention captures universal inter-vertex interactions, while with edge-aware attentive biases to particularly encode the graph structure and its heterogeneity. In this fashion, our approach fully models global and local dependencies in each n-ary fact, and hence can more effectively capture associations therein. Extensive evaluation verifies the effectiveness and superiority of our approach. It performs substantially and consistently better than current state-of-the-art across a variety of n-ary relational benchmarks. Our code is publicly available.
There recently has been a surge of interest in developing a new class of deep learning (DL) architectures that integrate an explicit time dimension as a fundamental building block of learning and representation mechanisms. In turn, many recent results show that topological descriptors of the observed data, encoding information on the shape of the dataset in a topological space at different scales, that is, persistent homology of the data, may contain important complementary information, improving both performance and robustness of DL. As convergence of these two emerging ideas, we propose to enhance DL architectures with the most salient time-conditioned topological information of the data and introduce the concept of zigzag persistence into time-aware graph convolutional networks (GCNs). Zigzag persistence provides a systematic and mathematically rigorous framework to track the most important topological features of the observed data that tend to manifest themselves over time. To integrate the extracted time-conditioned topological descriptors into DL, we develop a new topological summary, zigzag persistence image, and derive its theoretical stability guarantees. We validate the new GCNs with a time-aware zigzag topological layer (Z-GCNETs), in application to traffic forecasting and Ethereum blockchain price prediction. Our results indicate that Z-GCNET outperforms 13 state-of-the-art methods on 4 time series datasets.
Deep learning (DL) based semantic segmentation methods have been providing state-of-the-art performance in the last few years. More specifically, these techniques have been successfully applied to medical image classification, segmentation, and detection tasks. One deep learning technique, U-Net, has become one of the most popular for these applications. In this paper, we propose a Recurrent Convolutional Neural Network (RCNN) based on U-Net as well as a Recurrent Residual Convolutional Neural Network (RRCNN) based on U-Net models, which are named RU-Net and R2U-Net respectively. The proposed models utilize the power of U-Net, Residual Network, as well as RCNN. There are several advantages of these proposed architectures for segmentation tasks. First, a residual unit helps when training deep architecture. Second, feature accumulation with recurrent residual convolutional layers ensures better feature representation for segmentation tasks. Third, it allows us to design better U-Net architecture with same number of network parameters with better performance for medical image segmentation. The proposed models are tested on three benchmark datasets such as blood vessel segmentation in retina images, skin cancer segmentation, and lung lesion segmentation. The experimental results show superior performance on segmentation tasks compared to equivalent models including U-Net and residual U-Net (ResU-Net).
Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. Deep metric learning aims to learn deep neural networks for feature embeddings, distances of which satisfy given constraint. In deep metric learning, ensemble takes average of distances learned by multiple learners. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.