亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This research presents a novel Discrete Event Simulation (DES) of the Lloyd's of London specialty insurance market, exploring complex market dynamics that have not been previously studied quantitatively. The proof-of-concept model allows for the simulation of various scenarios that capture important market phenomena such as the underwriting cycle, the impact of risk syndication, and the importance of appropriate exposure management. Despite minimal calibration, our model has shown that it is a valuable tool for understanding and analysing the Lloyd's of London specialty insurance market, particularly in terms of identifying areas for further investigation for regulators and participants of the market alike. The results generate the expected behaviours that, syndicates (insurers) are less likely to go insolvent if they adopt sophisticated exposure management practices, catastrophe events lead to more defined patterns of cyclicality and cause syndicates to substantially increase their premiums offered. Lastly, syndication enhances the accuracy of actuarial price estimates and narrows the divergence among syndicates. Overall, this research offers a new perspective on the Lloyd's of London market and demonstrates the potential of individual-based modelling (IBM) for understanding complex financial systems.

相關內容

The recent Long-Range Graph Benchmark (LRGB, Dwivedi et al. 2022) introduced a set of graph learning tasks strongly dependent on long-range interaction between vertices. Empirical evidence suggests that on these tasks Graph Transformers significantly outperform Message Passing GNNs (MPGNNs). In this paper, we carefully reevaluate multiple MPGNN baselines as well as the Graph Transformer GPS (Ramp\'a\v{s}ek et al. 2022) on LRGB. Through a rigorous empirical analysis, we demonstrate that the reported performance gap is overestimated due to suboptimal hyperparameter choices. It is noteworthy that across multiple datasets the performance gap completely vanishes after basic hyperparameter optimization. In addition, we discuss the impact of lacking feature normalization for LRGB's vision datasets and highlight a spurious implementation of LRGB's link prediction metric. The principal aim of our paper is to establish a higher standard of empirical rigor within the graph machine learning community.

BRCA genes, comprising BRCA1 and BRCA2 play indispensable roles in preserving genomic stability and facilitating DNA repair mechanisms. The presence of germline mutations in these genes has been associated with increased susceptibility to various cancers, notably breast and ovarian cancers. Recent advancements in cost-effective sequencing technologies have revolutionized the landscape of cancer genomics, leading to a notable rise in the number of sequenced cancer patient genomes, enabling large-scale computational studies. In this study, we delve into the BRCA mutations in the dbSNP, housing an extensive repository of 41,177 and 44,205 genetic mutations for BRCA1 and BRCA2, respectively. Employing meticulous computational analysis from an umbrella perspective, our research unveils intriguing findings pertaining to a number of critical aspects. Namely, we discover that the majority of BRCA mutations in dbSNP have unknown clinical significance. We find that, although exon 11 for both genes contains the majority of the mutations and may seem as if it is a mutation hot spot, upon analyzing mutations per base pair, we find that all exons exhibit similar levels of mutations. Investigating mutations within introns, while we observe that the recorded mutations are generally uniformly distributed, almost all of the pathogenic mutations in introns are located close to splicing regions (at the beginning or the end). In addition to the findings mentioned earlier, we have also made other discoveries concerning mutation types and the level of confidence in observations within the dbSNP database.

This paper presents a hidden Markov model designed to investigate the complex nature of earnings persistence. The proposed model assumes that the residuals of log-earnings consist of a persistent component and a transitory component, both following general Markov processes. Nonparametric identification is achieved through spectral decomposition of linear operators, and a modified stochastic EM algorithm is introduced for model estimation. Applying the framework to the Panel Study of Income Dynamics (PSID) dataset, we find that the earnings process displays nonlinear persistence, conditional skewness, and conditional kurtosis. Additionally, the transitory component is found to possess non-Gaussian properties, resulting in a significantly asymmetric distributional impact when high-earning households face negative shocks or low-earning households encounter positive shocks. Our empirical findings also reveal the presence of ARCH effects in earnings at horizons ranging from 2 to 8 years, further highlighting the complex dynamics of earnings persistence.

We present EMDB, the Electromagnetic Database of Global 3D Human Pose and Shape in the Wild. EMDB is a novel dataset that contains high-quality 3D SMPL pose and shape parameters with global body and camera trajectories for in-the-wild videos. We use body-worn, wireless electromagnetic (EM) sensors and a hand-held iPhone to record a total of 58 minutes of motion data, distributed over 81 indoor and outdoor sequences and 10 participants. Together with accurate body poses and shapes, we also provide global camera poses and body root trajectories. To construct EMDB, we propose a multi-stage optimization procedure, which first fits SMPL to the 6-DoF EM measurements and then refines the poses via image observations. To achieve high-quality results, we leverage a neural implicit avatar model to reconstruct detailed human surface geometry and appearance, which allows for improved alignment and smoothness via a dense pixel-level objective. Our evaluations, conducted with a multi-view volumetric capture system, indicate that EMDB has an expected accuracy of 2.3 cm positional and 10.6 degrees angular error, surpassing the accuracy of previous in-the-wild datasets. We evaluate existing state-of-the-art monocular RGB methods for camera-relative and global pose estimation on EMDB. EMDB is publicly available under //ait.ethz.ch/emdb

Ever since the emergence of large language models (LLMs) and related applications, such as ChatGPT, its performance and error analysis for programming tasks have been subject to research. In this work-in-progress paper, we explore the potential of such LLMs for computing educators and learners, as we analyze the feedback it generates to a given input containing program code. In particular, we aim at (1) exploring how an LLM like ChatGPT responds to students seeking help with their introductory programming tasks, and (2) identifying feedback types in its responses. To achieve these goals, we used students' programming sequences from a dataset gathered within a CS1 course as input for ChatGPT along with questions required to elicit feedback and correct solutions. The results show that ChatGPT performs reasonably well for some of the introductory programming tasks and student errors, which means that students can potentially benefit. However, educators should provide guidance on how to use the provided feedback, as it can contain misleading information for novices.

Nowadays, the increasing complexity of Advanced Driver Assistance Systems (ADAS) and Automated Driving (AD) means that the industry must move towards a scenario-based approach to validation rather than relying on established technology-based methods. This new focus also requires the validation process to take into account Safety of the Intended Functionality (SOTIF), as many scenarios may trigger hazardous vehicle behaviour. Thus, this work demonstrates how the integration of the SOTIF process within an existing validation tool suite can be achieved. The necessary adaptations are explained with accompanying examples to aid comprehension of the approach.

This report examines Artificial Intelligence (AI) in the financial sector, outlining its potential to revolutionise the industry and identify its challenges. It underscores the criticality of a well-rounded understanding of AI, its capabilities, and its implications to effectively leverage its potential while mitigating associated risks. The potential of AI potential extends from augmenting existing operations to paving the way for novel applications in the finance sector. The application of AI in the financial sector is transforming the industry. Its use spans areas from customer service enhancements, fraud detection, and risk management to credit assessments and high-frequency trading. However, along with these benefits, AI also presents several challenges. These include issues related to transparency, interpretability, fairness, accountability, and trustworthiness. The use of AI in the financial sector further raises critical questions about data privacy and security. A further issue identified in this report is the systemic risk that AI can introduce to the financial sector. Being prone to errors, AI can exacerbate existing systemic risks, potentially leading to financial crises. Regulation is crucial to harnessing the benefits of AI while mitigating its potential risks. Despite the global recognition of this need, there remains a lack of clear guidelines or legislation for AI use in finance. This report discusses key principles that could guide the formation of effective AI regulation in the financial sector, including the need for a risk-based approach, the inclusion of ethical considerations, and the importance of maintaining a balance between innovation and consumer protection. The report provides recommendations for academia, the finance industry, and regulators.

Explainable Artificial Intelligence (XAI) is transforming the field of Artificial Intelligence (AI) by enhancing the trust of end-users in machines. As the number of connected devices keeps on growing, the Internet of Things (IoT) market needs to be trustworthy for the end-users. However, existing literature still lacks a systematic and comprehensive survey work on the use of XAI for IoT. To bridge this lacking, in this paper, we address the XAI frameworks with a focus on their characteristics and support for IoT. We illustrate the widely-used XAI services for IoT applications, such as security enhancement, Internet of Medical Things (IoMT), Industrial IoT (IIoT), and Internet of City Things (IoCT). We also suggest the implementation choice of XAI models over IoT systems in these applications with appropriate examples and summarize the key inferences for future works. Moreover, we present the cutting-edge development in edge XAI structures and the support of sixth-generation (6G) communication services for IoT applications, along with key inferences. In a nutshell, this paper constitutes the first holistic compilation on the development of XAI-based frameworks tailored for the demands of future IoT use cases.

We introduce DeepNash, an autonomous agent capable of learning to play the imperfect information game Stratego from scratch, up to a human expert level. Stratego is one of the few iconic board games that Artificial Intelligence (AI) has not yet mastered. This popular game has an enormous game tree on the order of $10^{535}$ nodes, i.e., $10^{175}$ times larger than that of Go. It has the additional complexity of requiring decision-making under imperfect information, similar to Texas hold'em poker, which has a significantly smaller game tree (on the order of $10^{164}$ nodes). Decisions in Stratego are made over a large number of discrete actions with no obvious link between action and outcome. Episodes are long, with often hundreds of moves before a player wins, and situations in Stratego can not easily be broken down into manageably-sized sub-problems as in poker. For these reasons, Stratego has been a grand challenge for the field of AI for decades, and existing AI methods barely reach an amateur level of play. DeepNash uses a game-theoretic, model-free deep reinforcement learning method, without search, that learns to master Stratego via self-play. The Regularised Nash Dynamics (R-NaD) algorithm, a key component of DeepNash, converges to an approximate Nash equilibrium, instead of 'cycling' around it, by directly modifying the underlying multi-agent learning dynamics. DeepNash beats existing state-of-the-art AI methods in Stratego and achieved a yearly (2022) and all-time top-3 rank on the Gravon games platform, competing with human expert players.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

北京阿比特科技有限公司