亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The continuous adaptation of software systems to meet the evolving needs of users is very important for enhancing user experience (UX). User interface (UI) adaptation, which involves adjusting the layout, navigation, and content presentation based on user preferences and contextual conditions, plays an important role in achieving this goal. However, suggesting the right adaptation at the right time and in the right place remains a challenge in order to make it valuable for the end-user. To tackle this challenge, machine learning approaches could be used. In particular, we are using Reinforcement Learning (RL) due to its ability to learn from interaction with the users. In this approach, the feedback is very important and the use of physiological data could be benefitial to obtain objective insights into how users are reacting to the different adaptations. Thus, in this PhD thesis, we propose an RL-based UI adaptation framework that uses physiological data. The framework aims to learn from user interactions and make informed adaptations to improve UX. To this end, our research aims to answer the following questions: Does the use of an RL-based approach improve UX? How effective is RL in guiding UI adaptation? and Can physiological data support UI adaptation for enhancing UX? The evaluation plan involves conducting user studies to evaluate answer these questions. The empirical evaluation will provide a strong empirical foundation for building, evaluating, and improving the proposed adaptation framework. The expected contributions of this research include the development of a novel framework for intelligent Adaptive UIs, insights into the effectiveness of RL algorithms in guiding UI adaptation, the integration of physiological data as objective measures of UX, and empirical validation of the proposed framework's impact on UX.

相關內容

Hackathons and software competitions, increasingly pivotal in the software industry, serve as vital catalysts for innovation and skill development for both organizations and students. These platforms enable companies to prototype ideas swiftly, while students gain enriched learning experiences, enhancing their practical skills. Over the years, hackathons have transitioned from mere competitive events to significant educational tools, fusing theoretical knowledge with real-world problem-solving. The integration of hackathons into computer science and software engineering curricula aims to align educational proficiencies within a collaborative context, promoting peer connectivity and enriched learning via industry-academia collaborations. However, the infusion of advanced technologies, notably artificial intelligence (AI), and machine learning, into hackathons is revolutionizing their structure and outcomes. This evolution brings forth both opportunities, like enhanced learning experiences, and challenges, such as ethical concerns. This study delves into the impact of generative AI, examining its influence on student's technological choices based on a case study on the University of Iowa 2023 event. The exploration provides insights into AI's role in hackathons, and its educational implications, and offers a roadmap for the integration of such technologies in future events, ensuring innovation is balanced with ethical and educational considerations.

Empirical research on perception and cognition has laid the foundation for visualization design, often yielding useful design guidelines for practitioners. However, it remains uncertain how well practitioners stay informed about such crucial visualization design knowledge. In this paper, we employed a mixed-method approach to explore the knowledge gap between visualization research and real-world design guidelines. We initially collected existing design guidelines from various sources and empirical studies from diverse publishing venues, analyzing their alignment and uncovering missing links and inconsistent knowledge. Subsequently, we conducted surveys and interviews with practitioners and researchers to gain further insights into their experiences and attitudes towards design guidelines and empirical studies, and their views on the knowledge gap between research and practice. Our findings highlight the similarities and differences in their perspectives and propose strategies to bridge the divide in visualization design knowledge.

Powered by the increasing predictive capabilities of machine learning algorithms, artificial intelligence (AI) systems have begun to be used to overrule human mistakes in many settings. We provide the first field evidence this AI oversight carries psychological costs that can impact human decision-making. We investigate one of the highest visibility settings in which AI oversight has occurred: the Hawk-Eye review of umpires in top tennis tournaments. We find that umpires lowered their overall mistake rate after the introduction of Hawk-Eye review, in line with rational inattention given psychological costs of being overruled by AI. We also find that umpires increased the rate at which they called balls in, which produced a shift from making Type II errors (calling a ball out when in) to Type I errors (calling a ball in when out). We structurally estimate the psychological costs of being overruled by AI using a model of rational inattentive umpires, and our results suggest that because of these costs, umpires cared twice as much about Type II errors under AI oversight.

Collaborative learning (CL) is a distributed learning framework that aims to protect user privacy by allowing users to jointly train a model by sharing their gradient updates only. However, gradient inversion attacks (GIAs), which recover users' training data from shared gradients, impose severe privacy threats to CL. Existing defense methods adopt different techniques, e.g., differential privacy, cryptography, and perturbation defenses, to defend against the GIAs. Nevertheless, all current defense methods suffer from a poor trade-off between privacy, utility, and efficiency. To mitigate the weaknesses of existing solutions, we propose a novel defense method, Dual Gradient Pruning (DGP), based on gradient pruning, which can improve communication efficiency while preserving the utility and privacy of CL. Specifically, DGP slightly changes gradient pruning with a stronger privacy guarantee. And DGP can also significantly improve communication efficiency with a theoretical analysis of its convergence and generalization. Our extensive experiments show that DGP can effectively defend against the most powerful GIAs and reduce the communication cost without sacrificing the model's utility.

Outsourced computation can put client data confidentiality at risk. Existing solutions are either inefficient or insufficiently secure: cryptographic techniques like fully-homomorphic encryption incur significant overheads, even with hardware assistance, while the complexity of hardware-assisted trusted execution environments has been exploited to leak secret data. Recent proposals such as BliMe and OISA show how dynamic information flow tracking (DIFT) enforced in hardware can protect client data efficiently. They are designed to protect CPU-only workloads. However, many outsourced computing applications, like machine learning, make extensive use of accelerators. We address this gap with Dolma, which applies DIFT to the Gemmini matrix multiplication accelerator, efficiently guaranteeing client data confidentiality, even in the presence of malicious/vulnerable software and side channel attacks on the server. We show that accelerators can allow DIFT logic optimizations that significantly reduce area overhead compared with general-purpose processor architectures. Dolma is integrated with the BliMe framework to achieve end-to-end security guarantees. We evaluate Dolma on an FPGA using a ResNet-50 DNN model and show that it incurs low overheads for large configurations ($4.4\%$, $16.7\%$, $16.5\%$ for performance, resource usage and power, respectively, with a 32x32 configuration).

As VR devices become more prevalent in the consumer space, VR applications are likely to be increasingly used by users unfamiliar with VR. Detecting the familiarity level of a user with VR as an interaction medium provides the potential of providing on-demand training for acclimatization and prevents the user from being burdened by the VR environment in accomplishing their tasks. In this work, we present preliminary results of using deep classifiers to conduct automatic detection of familiarity with VR by using hand tracking of the user as they interact with a numeric passcode entry panel to unlock a VR door. We use a VR door as we envision it to the first point of entry to collaborative virtual spaces, such as meeting rooms, offices, or clinics. Users who are unfamiliar with VR will have used their hands to open doors with passcode entry panels in the real world. Thus, while the user may not be familiar with VR, they would be familiar with the task of opening the door. Using a pilot dataset consisting of 7 users familiar with VR, and 7 not familiar with VR, we acquire highest accuracy of 88.03\% when 6 test users, 3 familiar and 3 not familiar, are evaluated with classifiers trained using data from the remaining 8 users. Our results indicate potential for using user movement data to detect familiarity for the simple yet important task of secure passcode-based access.

Existing recommender systems extract the user preference based on learning the correlation in data, such as behavioral correlation in collaborative filtering, feature-feature, or feature-behavior correlation in click-through rate prediction. However, regretfully, the real world is driven by causality rather than correlation, and correlation does not imply causation. For example, the recommender systems can recommend a battery charger to a user after buying a phone, in which the latter can serve as the cause of the former, and such a causal relation cannot be reversed. Recently, to address it, researchers in recommender systems have begun to utilize causal inference to extract causality, enhancing the recommender system. In this survey, we comprehensively review the literature on causal inference-based recommendation. At first, we present the fundamental concepts of both recommendation and causal inference as the basis of later content. We raise the typical issues that the non-causality recommendation is faced. Afterward, we comprehensively review the existing work of causal inference-based recommendation, based on a taxonomy of what kind of problem causal inference addresses. Last, we discuss the open problems in this important research area, along with interesting future works.

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

Causality knowledge is vital to building robust AI systems. Deep learning models often perform poorly on tasks that require causal reasoning, which is often derived using some form of commonsense knowledge not immediately available in the input but implicitly inferred by humans. Prior work has unraveled spurious observational biases that models fall prey to in the absence of causality. While language representation models preserve contextual knowledge within learned embeddings, they do not factor in causal relationships during training. By blending causal relationships with the input features to an existing model that performs visual cognition tasks (such as scene understanding, video captioning, video question-answering, etc.), better performance can be achieved owing to the insight causal relationships bring about. Recently, several models have been proposed that have tackled the task of mining causal data from either the visual or textual modality. However, there does not exist widespread research that mines causal relationships by juxtaposing the visual and language modalities. While images offer a rich and easy-to-process resource for us to mine causality knowledge from, videos are denser and consist of naturally time-ordered events. Also, textual information offers details that could be implicit in videos. We propose iReason, a framework that infers visual-semantic commonsense knowledge using both videos and natural language captions. Furthermore, iReason's architecture integrates a causal rationalization module to aid the process of interpretability, error analysis and bias detection. We demonstrate the effectiveness of iReason using a two-pronged comparative analysis with language representation learning models (BERT, GPT-2) as well as current state-of-the-art multimodal causality models.

Recommender systems exploit interaction history to estimate user preference, having been heavily used in a wide range of industry applications. However, static recommendation models are difficult to answer two important questions well due to inherent shortcomings: (a) What exactly does a user like? (b) Why does a user like an item? The shortcomings are due to the way that static models learn user preference, i.e., without explicit instructions and active feedback from users. The recent rise of conversational recommender systems (CRSs) changes this situation fundamentally. In a CRS, users and the system can dynamically communicate through natural language interactions, which provide unprecedented opportunities to explicitly obtain the exact preference of users. Considerable efforts, spread across disparate settings and applications, have been put into developing CRSs. Existing models, technologies, and evaluation methods for CRSs are far from mature. In this paper, we provide a systematic review of the techniques used in current CRSs. We summarize the key challenges of developing CRSs into five directions: (1) Question-based user preference elicitation. (2) Multi-turn conversational recommendation strategies. (3) Dialogue understanding and generation. (4) Exploitation-exploration trade-offs. (5) Evaluation and user simulation. These research directions involve multiple research fields like information retrieval (IR), natural language processing (NLP), and human-computer interaction (HCI). Based on these research directions, we discuss some future challenges and opportunities. We provide a road map for researchers from multiple communities to get started in this area. We hope this survey helps to identify and address challenges in CRSs and inspire future research.

北京阿比特科技有限公司