亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Purpose: Disease progression of retinal atrophy associated with AMD requires the accurate quantification of the retinal atrophy changes on longitudinal OCT studies. It is based on finding, comparing, and delineating subtle atrophy changes on consecutive pairs (prior and current) of unregistered OCT scans. Methods: We present a fully automatic end-to-end pipeline for the simultaneous detection and quantification of time-related atrophy changes associated with dry AMD in pairs of OCT scans of a patient. It uses a novel simultaneous multi-channel column-based deep learning model trained on registered pairs of OCT scans that concurrently detects and segments retinal atrophy segments in consecutive OCT scans by classifying light scattering patterns in matched pairs of vertical pixel-wide columns (A-scans) in registered prior and current OCT slices (B-scans). Results: Experimental results on 4,040 OCT slices with 5.2M columns from 40 scans pairs of 18 patients (66% training/validation, 33% testing) with 24.13+-14.0 months apart in which Complete RPE and Outer Retinal Atrophy (cRORA) was identified in 1,998 OCT slices (735 atrophy lesions from 3,732 segments, 0.45M columns) yield a mean atrophy segments detection precision, recall of 0.90+-0.09, 0.95+-0.06 and 0.74+-0.18, 0.94+-0.12 for atrophy lesions with AUC=0.897, all above observer variability. Simultaneous classification outperforms standalone classification precision and recall by 30+-62% and 27+-0% for atrophy segments and lesions. Conclusions: simultaneous column-based detection and quantification of retinal atrophy changes associated with AMD is accurate and outperforms standalone classification methods. Translational relevance: an automatic and efficient way to detect and quantify retinal atrophy changes associated with AMD.

相關內容

A rigidity circuit (in 2D) is a minimal dependent set in the rigidity matroid, i.e. a minimal graph supporting a non-trivial stress in any generic placement of its vertices in $\mathbb R^2$. Any rigidity circuit on $n\geq 5$ vertices can be obtained from rigidity circuits on a fewer number of vertices by applying the combinatorial resultant (CR) operation. The inverse operation is called a combinatorial resultant decomposition (CR-decomp). Any rigidity circuit on $n\geq 5$ vertices can be successively decomposed into smaller circuits, until the complete graphs $K_4$ are reached. This sequence of CR-decomps has the structure of a rooted binary tree called the combinatorial resultant tree (CR-tree). A CR-tree encodes an elimination strategy for computing circuit polynomials via Sylvester resultants. Different CR-trees lead to elimination strategies that can vary greatly in time and memory consumption. It is an open problem to establish criteria for optimal CR-trees, or at least to characterize those CR-trees that lead to good elimination strategies. In [12] we presented an algorithm for enumerating CR-trees where we give the algorithms for decomposing 3-connected rigidity circuits in polynomial time. In this paper we focus on those circuits that are not 3-connected, which we simply call 2-connected. In order to enumerate CR-decomps of 2-connected circuits $G$, a brute force exp-time search has to be performed among the subgraphs induced by the subsets of $V(G)$. This exp-time bottleneck is not present in the 3-connected case. In this paper we will argue that we do not have to account for all possible CR-decomps of 2-connected rigidity circuits to find a good elimination strategy; we only have to account for those CR-decomps that are a 2-split, all of which can be enumerated in polynomial time. We present algorithms and computational evidence in support of this heuristic.

We present a new approach to stabilizing high-order Runge-Kutta discontinuous Galerkin (RKDG) schemes using weighted essentially non-oscillatory (WENO) reconstructions in the context of hyperbolic conservation laws. In contrast to RKDG schemes that overwrite finite element solutions with WENO reconstructions, our approach employs the reconstruction-based smoothness sensor presented by Kuzmin and Vedral (J. Comput. Phys. 487:112153, 2023) to control the amount of added numerical dissipation. Incorporating a dissipation-based WENO stabilization term into a discontinuous Galerkin (DG) discretization, the proposed methodology achieves high-order accuracy while effectively capturing discontinuities in the solution. As such, our approach offers an attractive alternative to WENO-based slope limiters for DG schemes. The reconstruction procedure that we use performs Hermite interpolation on stencils composed of a mesh cell and its neighboring cells. The amount of numerical dissipation is determined by the relative differences between the partial derivatives of reconstructed candidate polynomials and those of the underlying finite element approximation. The employed smoothness sensor takes all derivatives into account to properly assess the local smoothness of a high-order DG solution. Numerical experiments demonstrate the ability of our scheme to capture discontinuities sharply. Optimal convergence rates are obtained for all polynomial degrees.

The emergence of Tiny Machine Learning (TinyML) has positively revolutionized the field of Artificial Intelligence by promoting the joint design of resource-constrained IoT hardware devices and their learning-based software architectures. TinyML carries an essential role within the fourth and fifth industrial revolutions in helping societies, economies, and individuals employ effective AI-infused computing technologies (e.g., smart cities, automotive, and medical robotics). Given its multidisciplinary nature, the field of TinyML has been approached from many different angles: this comprehensive survey wishes to provide an up-to-date overview focused on all the learning algorithms within TinyML-based solutions. The survey is based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodological flow, allowing for a systematic and complete literature survey. In particular, firstly we will examine the three different workflows for implementing a TinyML-based system, i.e., ML-oriented, HW-oriented, and co-design. Secondly, we propose a taxonomy that covers the learning panorama under the TinyML lens, examining in detail the different families of model optimization and design, as well as the state-of-the-art learning techniques. Thirdly, this survey will present the distinct features of hardware devices and software tools that represent the current state-of-the-art for TinyML intelligent edge applications. Finally, we discuss the challenges and future directions.

We consider the problem of simultaneous variable selection and estimation of the corresponding regression coefficients in an ultra-high dimensional linear regression models, an extremely important problem in the recent era. The adaptive penalty functions are used in this regard to achieve the oracle variable selection property along with easier computational burden. However, the usual adaptive procedures (e.g., adaptive LASSO) based on the squared error loss function is extremely non-robust in the presence of data contamination which are quite common with large-scale data (e.g., noisy gene expression data, spectra and spectral data). In this paper, we present a regularization procedure for the ultra-high dimensional data using a robust loss function based on the popular density power divergence (DPD) measure along with the adaptive LASSO penalty. We theoretically study the robustness and the large-sample properties of the proposed adaptive robust estimators for a general class of error distributions; in particular, we show that the proposed adaptive DPD-LASSO estimator is highly robust, satisfies the oracle variable selection property, and the corresponding estimators of the regression coefficients are consistent and asymptotically normal under easily verifiable set of assumptions. Numerical illustrations are provided for the mostly used normal error density. Finally, the proposal is applied to analyze an interesting spectral dataset, in the field of chemometrics, regarding the electron-probe X-ray microanalysis (EPXMA) of archaeological glass vessels from the 16th and 17th centuries.

The Boolean Satisfiability problem (SAT) is the most prototypical NP-complete problem and of great practical relevance. One important class of solvers for this problem are stochastic local search (SLS) algorithms that iteratively and randomly update a candidate assignment. Recent breakthrough results in theoretical computer science have established sufficient conditions under which SLS solvers are guaranteed to efficiently solve a SAT instance, provided they have access to suitable "oracles" that provide samples from an instance-specific distribution, exploiting an instance's local structure. Motivated by these results and the well established ability of neural networks to learn common structure in large datasets, in this work, we train oracles using Graph Neural Networks and evaluate them on two SLS solvers on random SAT instances of varying difficulty. We find that access to GNN-based oracles significantly boosts the performance of both solvers, allowing them, on average, to solve 17% more difficult instances (as measured by the ratio between clauses and variables), and to do so in 35% fewer steps, with improvements in the median number of steps of up to a factor of 8. As such, this work bridges formal results from theoretical computer science and practically motivated research on deep learning for constraint satisfaction problems and establishes the promise of purpose-trained SAT solvers with performance guarantees.

In the last ongoing years, there has been a significant ascending on the field of Natural Language Processing (NLP) for performing multiple tasks including English Language Teaching (ELT). An effective strategy to favor the learning process uses interactive devices to engage learners in their self-learning process. In this work, we present a working prototype of a humanoid robotic system to assist English language self-learners through text generation using Long Short Term Memory (LSTM) Neural Networks. The learners interact with the system using a Graphic User Interface that generates text according to the English level of the user. The experimentation was conducted using English learners and the results were measured accordingly to International English Language Testing System (IELTS) rubric. Preliminary results show an increment in the Grammatical Range of learners who interacted with the system.

Grid sentence is commonly used for studying the Lombard effect and Normal-to-Lombard conversion. However, it's unclear if Normal-to-Lombard models trained on grid sentences are sufficient for improving natural speech intelligibility in real-world applications. This paper presents the recording of a parallel Lombard corpus (called Lombard Chinese TIMIT, LCT) extracting natural sentences from Chinese TIMIT. Then We compare natural and grid sentences in terms of Lombard effect and Normal-to-Lombard conversion using LCT and Enhanced MAndarin Lombard Grid corpus (EMALG). Through a parametric analysis of the Lombard effect, We find that as the noise level increases, both natural sentences and grid sentences exhibit similar changes in parameters, but in terms of the increase of the alpha ratio, grid sentences show a greater increase. Following a subjective intelligibility assessment across genders and Signal-to-Noise Ratios, the StarGAN model trained on EMALG consistently outperforms the model trained on LCT in terms of improving intelligibility. This superior performance may be attributed to EMALG's larger alpha ratio increase from normal to Lombard speech.

We present a training method with linguistic speech regularization that improves the robustness of spontaneous speech synthesis methods with filled pause (FP) insertion. Spontaneous speech synthesis is aimed at producing speech with human-like disfluencies, such as FPs. Because modeling the complex data distribution of spontaneous speech with a rich FP vocabulary is challenging, the quality of FP-inserted synthetic speech is often limited. To address this issue, we present a method for synthesizing spontaneous speech that improves robustness to diverse FP insertions. Regularization is used to stabilize the synthesis of the linguistic speech (i.e., non-FP) elements. To further improve robustness to diverse FP insertions, it utilizes pseudo-FPs sampled using an FP word prediction model as well as ground-truth FPs. Our experiments demonstrated that the proposed method improves the naturalness of synthetic speech with ground-truth and predicted FPs by 0.24 and 0.26, respectively.

We present ResMLP, an architecture built entirely upon multi-layer perceptrons for image classification. It is a simple residual network that alternates (i) a linear layer in which image patches interact, independently and identically across channels, and (ii) a two-layer feed-forward network in which channels interact independently per patch. When trained with a modern training strategy using heavy data-augmentation and optionally distillation, it attains surprisingly good accuracy/complexity trade-offs on ImageNet. We will share our code based on the Timm library and pre-trained models.

Artificial neural networks thrive in solving the classification problem for a particular rigid task, acquiring knowledge through generalized learning behaviour from a distinct training phase. The resulting network resembles a static entity of knowledge, with endeavours to extend this knowledge without targeting the original task resulting in a catastrophic forgetting. Continual learning shifts this paradigm towards networks that can continually accumulate knowledge over different tasks without the need to retrain from scratch. We focus on task incremental classification, where tasks arrive sequentially and are delineated by clear boundaries. Our main contributions concern 1) a taxonomy and extensive overview of the state-of-the-art, 2) a novel framework to continually determine the stability-plasticity trade-off of the continual learner, 3) a comprehensive experimental comparison of 11 state-of-the-art continual learning methods and 4 baselines. We empirically scrutinize method strengths and weaknesses on three benchmarks, considering Tiny Imagenet and large-scale unbalanced iNaturalist and a sequence of recognition datasets. We study the influence of model capacity, weight decay and dropout regularization, and the order in which the tasks are presented, and qualitatively compare methods in terms of required memory, computation time, and storage.

北京阿比特科技有限公司