Replicability is essential in science as it allows us to validate and verify research findings. Impagliazzo, Lei, Pitassi and Sorrell (`22) recently initiated the study of replicability in machine learning. A learning algorithm is replicable if it typically produces the same output when applied on two i.i.d. inputs using the same internal randomness. We study a variant of replicability that does not involve fixing the randomness. An algorithm satisfies this form of replicability if it typically produces the same output when applied on two i.i.d. inputs (without fixing the internal randomness). This variant is called global stability and was introduced by Bun, Livni and Moran (`20) in the context of differential privacy. Impagliazzo et al. showed how to boost any replicable algorithm so that it produces the same output with probability arbitrarily close to 1. In contrast, we demonstrate that for numerous learning tasks, global stability can only be accomplished weakly, where the same output is produced only with probability bounded away from 1. To overcome this limitation, we introduce the concept of list replicability, which is equivalent to global stability. Moreover, we prove that list replicability can be boosted so that it is achieved with probability arbitrarily close to 1. We also describe basic relations between standard learning-theoretic complexity measures and list replicable numbers. Our results in addition imply that, besides trivial cases, replicable algorithms (in the sense of Impagliazzo et al.) must be randomized. The proof of the impossibility result is based on a topological fixed-point theorem. For every algorithm, we are able to locate a "hard input distribution" by applying the Poincar\'e-Miranda theorem in a related topological setting. The equivalence between global stability and list replicability is algorithmic.
Cooperative multi-agent reinforcement learning (MARL) is a challenging task, as agents must learn complex and diverse individual strategies from a shared team reward. However, existing methods struggle to distinguish and exploit important individual experiences, as they lack an effective way to decompose the team reward into individual rewards. To address this challenge, we propose DIFFER, a powerful theoretical framework for decomposing individual rewards to enable fair experience replay in MARL. By enforcing the invariance of network gradients, we establish a partial differential equation whose solution yields the underlying individual reward function. The individual TD-error can then be computed from the solved closed-form individual rewards, indicating the importance of each piece of experience in the learning task and guiding the training process. Our method elegantly achieves an equivalence to the original learning framework when individual experiences are homogeneous, while also adapting to achieve more muscular efficiency and fairness when diversity is observed.Our extensive experiments on popular benchmarks validate the effectiveness of our theory and method, demonstrating significant improvements in learning efficiency and fairness.
This work introduces an empirical quadrature-based hyperreduction procedure and greedy training algorithm to effectively reduce the computational cost of solving convection-dominated problems with limited training. The proposed approach circumvents the slowly decaying $n$-width limitation of linear model reduction techniques applied to convection-dominated problems by using a nonlinear approximation manifold systematically defined by composing a low-dimensional affine space with bijections of the underlying domain. The reduced-order model is defined as the solution of a residual minimization problem over the nonlinear manifold. An online-efficient method is obtained by using empirical quadrature to approximate the optimality system such that it can be solved with mesh-independent operations. The proposed reduced-order model is trained using a greedy procedure to systematically sample the parameter domain. The effectiveness of the proposed approach is demonstrated on two shock-dominated computational fluid dynamics benchmarks.
We design replicable algorithms in the context of statistical clustering under the recently introduced notion of replicability from Impagliazzo et al. [2022]. According to this definition, a clustering algorithm is replicable if, with high probability, its output induces the exact same partition of the sample space after two executions on different inputs drawn from the same distribution, when its internal randomness is shared across the executions. We propose such algorithms for the statistical $k$-medians, statistical $k$-means, and statistical $k$-centers problems by utilizing approximation routines for their combinatorial counterparts in a black-box manner. In particular, we demonstrate a replicable $O(1)$-approximation algorithm for statistical Euclidean $k$-medians ($k$-means) with $\operatorname{poly}(d)$ sample complexity. We also describe an $O(1)$-approximation algorithm with an additional $O(1)$-additive error for statistical Euclidean $k$-centers, albeit with $\exp(d)$ sample complexity. In addition, we provide experiments on synthetic distributions in 2D using the $k$-means++ implementation from sklearn as a black-box that validate our theoretical results.
A ProbLog program is a logic program with facts that only hold with a specified probability. In this contribution we extend this ProbLog language by the ability to answer "What if" queries. Intuitively, a ProbLog program defines a distribution by solving a system of equations in terms of mutually independent predefined Boolean random variables. In the theory of causality, Judea Pearl proposes a counterfactual reasoning for such systems of equations. Based on Pearl's calculus, we provide a procedure for processing these counterfactual queries on ProbLog programs, together with a proof of correctness and a full implementation. Using the latter, we provide insights into the influence of different parameters on the scalability of inference. Finally, we also show that our approach is consistent with CP-logic, i.e. with the causal semantics for logic programs with annotated with disjunctions.
The replicability crisis in the social, behavioral, and data sciences has led to the formulation of algorithm frameworks for replicability -- i.e., a requirement that an algorithm produce identical outputs (with high probability) when run on two different samples from the same underlying distribution. While still in its infancy, provably replicable algorithms have been developed for many fundamental tasks in machine learning and statistics, including statistical query learning, the heavy hitters problem, and distribution testing. In this work we initiate the study of replicable reinforcement learning, providing a provably replicable algorithm for parallel value iteration, and a provably replicable version of R-max in the episodic setting. These are the first formal replicability results for control problems, which present different challenges for replication than batch learning settings.
We introduce a random recursive tree model with two communities, called balanced community modulated random recursive tree, or BCMRT in short. In this setting, pairs of nodes of different type appear sequentially. Each one of them decides independently to attach to their own type with probability 1-q, or to the other type with probability q, and then chooses its parent uniformly within the set of existing nodes with the selected type. We find that the limiting degree distributions coincide for different q. Therefore, as far as inference is concerned, other statistics have to be studied. We first consider the setting where the time-labels of the nodes, i.e. their time of arrival, are observed but their type is not. In this setting, we design a consistent estimator for q and provide bounds for the feasibility of testing between two different values of q. Moreover, we show that if q is small enough, then it is possible to cluster in a way correlated with the true partition, even though the algorithm is exponential in time. In the unlabelled setting, i.e. when only the tree structure is observed, we show that it is possible to test between different values of q in a strictly better way than by random guessing. This follows from a delicate analysis of the sum-of-distances statistic.
We propose a general learning framework for the protection mechanisms that protects privacy via distorting model parameters, which facilitates the trade-off between privacy and utility. The algorithm is applicable to arbitrary privacy measurements that maps from the distortion to a real value. It can achieve personalized utility-privacy trade-off for each model parameter, on each client, at each communication round in federated learning. Such adaptive and fine-grained protection can improve the effectiveness of privacy-preserved federated learning. Theoretically, we show that gap between the utility loss of the protection hyperparameter output by our algorithm and that of the optimal protection hyperparameter is sub-linear in the total number of iterations. The sublinearity of our algorithm indicates that the average gap between the performance of our algorithm and that of the optimal performance goes to zero when the number of iterations goes to infinity. Further, we provide the convergence rate of our proposed algorithm. We conduct empirical results on benchmark datasets to verify that our method achieves better utility than the baseline methods under the same privacy budget.
In this paper, we investigate the problem of offline reinforcement learning with human feedback where feedback is available in the form of preference between trajectory pairs rather than explicit rewards. Our proposed algorithm consists of two main steps: (1) estimate the implicit reward using Maximum Likelihood Estimation (MLE) with general function approximation from offline data and (2) solve a distributionally robust planning problem over a confidence set around the MLE. We consider the general reward setting where the reward can be defined over the whole trajectory and provide a novel guarantee that allows us to learn any target policy with a polynomial number of samples, as long as the target policy is covered by the offline data. This guarantee is the first of its kind with general function approximation. To measure the coverage of the target policy, we introduce a new single-policy concentrability coefficient, which can be upper bounded by the per-trajectory concentrability coefficient. We also establish lower bounds that highlight the necessity of such concentrability and the difference from standard RL, where state-action-wise rewards are directly observed. We further extend and analyze our algorithm when the feedback is given over action pairs.
Deep kernel processes are a recently introduced class of deep Bayesian models that have the flexibility of neural networks, but work entirely with Gram matrices. They operate by alternately sampling a Gram matrix from a distribution over positive semi-definite matrices, and applying a deterministic transformation. When the distribution is chosen to be Wishart, the model is called a deep Wishart process (DWP). This particular model is of interest because its prior is equivalent to a deep Gaussian process (DGP) prior, but at the same time it is invariant to rotational symmetries, leading to a simpler posterior distribution. Practical inference in the DWP was made possible in recent work ("A variational approximate posterior for the deep Wishart process" Ober and Aitchison 2021a) where the authors used a generalisation of the Bartlett decomposition of the Wishart distribution as the variational approximate posterior. However, predictive performance in that paper was less impressive than one might expect, with the DWP only beating a DGP on a few of the UCI datasets used for comparison. In this paper, we show that further generalising their distribution to allow linear combinations of rows and columns in the Bartlett decomposition results in better predictive performance, while incurring negligible additional computation cost.
The combination of Reinforcement Learning (RL) with deep learning has led to a series of impressive feats, with many believing (deep) RL provides a path towards generally capable agents. However, the success of RL agents is often highly sensitive to design choices in the training process, which may require tedious and error-prone manual tuning. This makes it challenging to use RL for new problems, while also limits its full potential. In many other areas of machine learning, AutoML has shown it is possible to automate such design choices and has also yielded promising initial results when applied to RL. However, Automated Reinforcement Learning (AutoRL) involves not only standard applications of AutoML but also includes additional challenges unique to RL, that naturally produce a different set of methods. As such, AutoRL has been emerging as an important area of research in RL, providing promise in a variety of applications from RNA design to playing games such as Go. Given the diversity of methods and environments considered in RL, much of the research has been conducted in distinct subfields, ranging from meta-learning to evolution. In this survey we seek to unify the field of AutoRL, we provide a common taxonomy, discuss each area in detail and pose open problems which would be of interest to researchers going forward.